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Abstract Optical bistability with a hybrid silicon-plasmonic configuration consisting of a
nonlinear Bragg-grating resonator side-coupled with a buswaveguide is theoretically inves-
tigated. The nonlinear response is studied with a modeling framework combining perturba-
tion theory and temporal coupled-mode theory, fed with three-dimensional finite element
method simulations. For the CW case, a general closed-form expression describing the non-
linear response is derived, valid for finite intrinsic quality factors and arbitrary coupling
conditions. This generalization is necessary for studyingplasmonic resonators which are
inherently lossy. The effect of the parameters entering in the expression on the bistability
curve is thoroughly investigated and the physical system isaccordingly designed so as to
exhibit minimum power threshold and an extinction ratio between bistable states exceeding
10 dB. Finally, the temporal dynamics are assessed. The system can toggle between bistable
states in approximately 2 ps and is thus suitable for ultrafast memory/switching applications.

Keywords Nonlinear optics· Optical bistabilty· Plasmonics· Hybrid plasmonic
waveguides· Bragg-grating resonators
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1 Introduction

Nonlinear phenomena in guided-wave plasmonics are being intensively investigated, due
to their potential for implementing tunable/dynamic integrated components (Kauranen and
Zayats 2012). In particular, phenomena based on the third order susceptibility,χ(3), can be a
favorable approach, since they feature ultrafast responseand allow for all-optical operation.
Interestingly, the combination of nonlinearity and optical feedback in resonant nonlinear
structures can lead to bistable behavior. In turn, this offers a route towards implementing
memory, switching or logic-gate functions (Tanabe et al 2005; Almeida and Lipson 2004;
Xu and Lipson 2007). What is more, the power requirements compared to nonresonant,
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directional coupler approaches (Milián and Skryabin 2011; Kriesch et al 2012; Pitilakis and
Kriezis 2013) can be greatly reduced, since the intensity build-up in the resonator translates
to high power densities enhancing nonlinear effects.

To date, bistability studies in plasmonics have mainly revolved around two-dimensional
geometries with the metal-insulator-metal (MIM) waveguide (Pannipitiya et al 2011; Wang
et al 2011; Xiang et al 2014; Shiu et al 2014). Addressing the need for practical, three-
dimensional bistable components, we have recently examined the manifestation of optical
bistability with nonlinear traveling-wave (disk) resonators made of hybrid plasmonic waveg-
uides (Tsilipakos and Kriezis 2014). The presence of the resonator has led to reduced input
power requirements, indicating the potential of bistable structures for practical applications.
Standing-wave resonators can be also utilized for the task.In fact, such resonators can con-
fine the optical mode in smaller volumes (since they do not rely on waveguide bending),
therefore promising to further reduce the power threshold.For example, in the context of
hybrid plasmonic wavegudes, tight mode confinement has beendemonstrated with 1D pho-
tonic crystal (nanobeam) resonators, investigated for lasing applications (Xu and Shi 2013).
It is, thus, useful to investigate the prospect of standing-wave resonators for optical bistabil-
ity and compare their performance with traveling-wave structures.

In this work, we focus on a nonlinear standing-wave resonator formed with Bragg re-
flectors. As in (Tsilipakos and Kriezis 2014), we base the physical implementation on a
nonlinear hybrid plasmonic waveguide, which favors the manifestation of nonlinear effects
through an advantageous combination of nanoscale confinement and relatively low loss. The
resonator is side-coupled to the waveguide, since this coupling scheme is known to result
in higher extinction ratios (ERs) between bistable states compared to direct coupling (Yanik
et al 2003). The nonlinear response of the resonator-waveguide system is studied by means
of a theoretical framework combining perturbation theory and temporal coupled-mode the-
ory (CMT), fed with rigorous, full-wave simulations of the linear system conducted with
the three-dimensional vectorial finite element method (3D-VFEM). Based on the simulation
results, we identify the geometrical parameters leading tooptimum performance and design
the physical system accordingly. Subsequently, the performance is assessed in both CW and
pulsed conditions.

The paper is organized as follows: The system under study is presented in Section 2.
In Section 3 the theoretical framework is introduced and generalclosed-form equations de-
scribing the CW nonlinear response are derived, valid for finite intrinsic quality factors and
arbitrary coupling conditions. The effect of the parameters entering in the theoretical model,
namely, the detuningδ and intrinsic loss factorrQ, on the bistability curve are investigated
in Section 4. Based on the findings of this Section, we design the physical system in Section
5. Its performance in terms of required input power, extinction ratio between bistable states,
and response time is assessed in Section 6. Finally, a conclusion and outlook is given in
Section 7.

2 Nonlinear Bragg-grating resonator

The system considered is based on the nonlinear conductor-gap-silicon (NLCGS) waveguide
introduced in (Pitilakis et al 2012). The waveguide cross-section is depicted in Fig. 1(a). It
is similar to a standard CGS waveguide (Wu et al 2010), with the exception that a nonlinear
polymer is occupying the low-index “gap” between high-index semiconductor and metal
regions, instead of silica. More specifically, the polymer of choice is DDMEBT (Esembeson
et al 2008), which apart from being highly nonlinear (n2 = 1.7×10−17 m2/W) has moreover
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Fig. 1 (a) Cross-section of nonlinear CGS waveguide. The gap between silver and silicon layers is occupied
by the nonlinear polymer DDMEBT. The heights of the three layers comprising the guiding ridge arehAg =
100 nm,hD = 30 nm, andhSi = 340 nm, respectively. The waveguide widthw is 200 nm. (b) Distribution of
electric field norm (|E|) for the fundamental mode (TM00) at 1.55 µm.

proven compatible with nanophotonic integration (Koos et al 2009). The metal is silver,
since it features lower resistive losses compared to gold, which is of paramount importance
in nonlinear applications. The linear refractive indices for the considered materials at the
telecom wavelength of 1.55 µm arenSiO2 = 1.45,nSi = 3.48,nD = 1.8, andnAg = 0.145−
j11.4 (Johnson and Christy 1972).

Regarding geometrical parameters, the dimensions of the silicon core arew × hSi =
200 nm×340 nm, typical for CGS waveguides (Wu et al 2010). Importantly, the 340-nm
height is customary for silicon photonic waveguides operating on the TM mode, thus facil-
itating the interfacing of the CGS waveguide with standard silicon photonic circuitry. The
polymer layer is 30-nm high, in order to ensure tight mode confinement, while for the silver
layerhAg = 100 nm.

The fundamental TM mode supported by the NLCGS waveguide is depicted in Fig. 1(b).
More specifically, we plot the electric field norm, as obtained with a FEM eigenmode solver.
The mode is almost entirely located inside the nanosized polymer layer. The effective mode
area, calculated throughAeff , (

∫∫ |E|2dxdy)2/
∫∫ |E|4 dxdy, is only 0.03 µm2. The effective

index at 1.55 µm isneff = 2.382− j0.0022, with the imaginary part corresponding to a prop-
agation length (thee-folding distance of optical intensity) ofLprop= 56 µm. On the whole,
the considered waveguide can provide subwavelength confinement while maintaining prop-
agation loss at a relatively low level. Both of these traits are essential for the manifestation
of nonlinear effects meaning that the NLCGS waveguide is well suited to our application.

The NLCGS-based standing-wave resonator structure examined is depicted in Fig. 2.
A cavity with dimensions (W , L) is formed betweenN-period-long Bragg reflectors with
a pitchΛ . More specifically, each period of the reflector consists of two segments (Λ =
L1+L2) with widthsW1 ≡W andW2, respectively. Clearly, for a recess grating like the one
in Fig. 2 it holdsW2 <W1, while for a protruding grating it would beW2 >W1. The cavity
is side-coupled to a standard CGS waveguide (w = 200 nm) through a coupling gapg. The
waveguide interacts with the resonator for a length equal tothe extent of the cavity (L), after
which the waveguide is curved away from the resonator in order to avoid coupling along
the grating regions. AnR value of 2µm is adopted, for which radiation losses are negligible
(Ketzaki et al 2013). The cavity (W , L) and grating (W1 ≡W ,W2, Λ ) geometrical parameters,
as well as the coupling gapg, will be determined in Section 5 after identifying the design
specifications in Section 4. For the number of grating periods, we fixN at 16, having verified
it constitutes a favorable compromise between high reflectivity and compactness.
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Fig. 2 NLCGS-based Bragg-grating resonator coupled to a CGS bus waveguide through coupling gapg.
A cavity with dimensions (W , L) is formed betweenN-period-long Bragg reflectors with a pitchΛ . The
waveguide is curved (R = 2 µm) to avoid coupling along the grating region.

3 Modeling framework

First, we briefly discuss the modeling framework employed. The nonlinear response of the
resonator-waveguide system is studied with a theoretical framework combining perturbation
theory and temporal coupled-mode theory (Soljačić et al 2002; Bravo-Abad et al 2007).
This approach is much simpler compared to rigorously simulating the three-dimensional
nonlinear system and still produces very accurate results, as has beendemonstrated with
photonic crystal cavities (Soljačić et al 2002; Yanik et al 2003; Bravo-Abad et al 2007).
Rigorous full-wave simulations of the 3D system still need to be performed in order to feed
the theoretical model, albeit they are conducted in thelinear regime. In this work, these
simulations are carried out with the 3D-VFEM (Tsilipakos etal 2011).

This framework has already been developed and successfullyapplied to side-coupled
standing-wave cavities in the context of photonic crystal structures (Yanik et al 2003). How-
ever, the derived closed-form expression describing the CWnonlinear response assumes an
infinite intrinsic quality factor for the resonator, as is typically the case with photonic crystal
cavities. Here, we outline the formulation for the purpose of arriving at a general closed-form
expression, valid for finite intrinsic quality factors and arbitrary coupling conditions. This
generalization is necessary for studying plasmonic resonators which are inherently lossy.

Applying perturbation theory, the resonance shift due to Kerr nonlinearity can be cast in
the form (Bravo-Abad et al 2007)

∆ω
ω0

=−1
4

c0

(

ω0

c0

)3

κnmax
2 Wres, (1)

whereWres= (ε0/2)
∫∫∫

V n2(r) |E0|2 dV is the total energy stored in the cavity (on resonance
stored electric and magnetic energies are equal), withE0(r) denoting the unperturbed elec-
tric field in the structure. In Eq. (1) we have introduced the nonlinear feedback parameter
κ ; a parameter measuring the overlap between nonlinear material and field distribution. It is
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defined through (Bravo-Abad et al 2007; Soljačić et al 2002)

κ ,

(

c0

ω0

)3
1
3

∫∫∫

V
n2(r)n2(r)

[

|E0 ·E0|2+2|E0|4
]

dV
[

1
2

∫∫∫

V
n2(r) |E0|2 dV

]2

nmax
2

, (2)

with nmax
2 being the maximum value ofn2(r). κ is a dimensionless parameter inversely

proportional to the effective mode volume. Moreover, it is independent of the nonlinear
material (due to the normalization withnmax

2 ), the peak power and the external quality factor
as long as they do not dramatically affect the mode profile.

The Kerr-induced frequency shift∆ω of Eq. (1) can be readily introduced in a temporal
CMT framework (Haus 1984; Fan et al 2003). Then, the equations describing a side-coupled
standing-wave resonator are given by

da
dt

= j(ω0+∆ω)a− 1
τi

a− 1
τe

a+ j

√

1
τe

sin, (3a)

sout = sin + j

√

1
τe

a, (3b)

sref = j

√

1
τe

a, (3c)

wherea = a(t) is the mode amplitude, normalized so that|a|2 = Wres. In the same way,
input (sin), output (sout) and reflected (sref) wave amplitudes are normalized so that|s|2 ex-
presses guided power. Finally,τi,e denote intrinsic and external (coupling) photon lifetimes,
respectively, associated with the respective quality factors throughQ = ω0τ/2.

Assuming a harmonic time dependence (exp{ jωt}), we can calculate the steady state
(d/dt = 0) transmitted and reflected power by substituting Eq. (3a) in (3b) and (3c), respec-
tively, as

T ≡ Pout

Pin
=

r2
Q +(δ − τe∆ω)2

(1+ rQ)2+(δ − τe∆ω)2 , (4a)

R ≡ Pref

Pin
=

1
(1+ rQ)2+(δ − τe∆ω)2 . (4b)

In Eqs. 4,δ = τe(ω −ω0) is the normalized detuning andrQ = τe/τi = Qe/Qi the intrin-
sic loss factor. The latter is the parameter that generalizes the analysis,encompassing the
possibility of finite intrinsic quality factors. Clearly, in lossless casesQi → ∞ andrQ = 0.

In order to construct the hysterisis loop using Eqs. (4), we first need to express the stored
energy (contained in∆ω) in terms of input, output and/or reflected power. More specifically,
by recalling the definition of the quality factor as the fraction between stored energy over
dissipated power per optical cycle we can writeQe = ω0 Wres/Pe, wherePe is the power
decaying to the neighboring waveguide. Considering that a standing-wave resonator radiates
equally in both directions of the bus waveguide,Pe can be expressed in terms of reflected
power asPe = 2Pref. Note that expressingPe in terms ofPout instead ofPref, as exercised
in directly-coupled cavities (Soljačić et al 2002), would be desirable but is not possible.
In side-coupled cavitiesPout is not determined solely by the stored energy decaying to the
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waveguide but by the power carried in the bus waveguide as well [Eq. (3b)]. Combining
Qe = ω0 Wres/(2Pref) with Eq. (1), we get

τe∆ω =−Pref

P0
, (5)

where

P0 =
1

(

ω0

c0

)2

κQ2
enmax

2

(6)

is the characteristic power of the system. This parameter isof utmost importance, since it is
associated with the threshold for bistability. Notice thatP0 is inversely proportional to the
κQ2

e product. Obviously, in practical applications our goal is to minimizeP0 or, equivalently,
maximizeκQ2

e , in order to achieve low-power bistable action.
Using Eq. (5) in Eqs. (4) and introducing normalized guided powersp = P/P0 we arrive

at

pout

pin
=

r2
Q +(δ + pref)

2

(1+ rQ)2+(δ + pref)2 , (7a)

pref

pin
=

1
(1+ rQ)2+(δ + pref)2 . (7b)

Eqs. (7) constitute a closed-form, 2×2 system of polynomial equations describing the CW
nonlinear response and allowing for constructing the hysterisis loop. The system can only
be decoupled in the case of infinite intrinsic quality factor, where intrinsic losses are zero
and pref can be expressed in terms of input and output powers aspref = pin − pout. Then,
Eq. (7a) can be used for describing the optical response, as in (Yanik et al 2003).

Eq. (7b) predicts bistable behavior for the reflected power when it admits three real,
positive solutions. These solutions are inherited in Eq. (7a), giving the same bistable behav-
ior in the output. From a mathematical perspective, bistability occurs when the slope of the
pref − pin curve is infinite, indicating that more than one solution forthe same abscissa is
possible. This is expressed as∂ pref/∂ pin → ∞, or equivalently∂ pin/∂ pref = 0. Applying
the latter in Eq. (7b) we reach

3p2
ref+4δ pref+

[

δ 2+(1+ rQ)
2]= 0. (8)

Bistability occurs when the discriminant of Eq. (8) is positive (guided power must be a real
number) and moreoverδ < 0 (ensures that the roots are positive numbers), leading to the
condition

δ <−(1+ rQ)
√

3≡−δth. (9)

Equation (9) states that bistability manifests (for appropriate input power levels) when the
normalized detuning is negative and exceeds the threshold value of(1+ rQ)

√
3. Note that

δth depends onrQ; it reduces to the constant value of
√

3 only in the lossless case.
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Fig. 3 Effect of detuning on optical response. (a)rQ = 0 with the respective threshold beingδth =
√

3≈ 1.73,
(b) rQ = 0.3 with the respective threshold beingδth = 1.3

√
3 ≈ 2.25. Solid lines represent stable states,

whereas dashed lines represent unstable states (although predicted by Eqs. (7) they cannot be practically
observed). As|δ | increases, bistability manifests for higher input powers.

4 Effect of model parameters on bistability curve

Let us now investigate the effect of parametersδ and rQ on the optical response for the
purpose of identifying the values that lead to optimum performance. We are interested in
low input power thresholds and high extinction ratios between bistable states.

We first examine the effect of normalized detuningδ . For this purpose, we fixrQ at
two distinct values, namely,rQ = 0 andrQ = 0.3, representing the absence and presence of
intrinsic losses, respectively. In physical system terms,a photonic crystal cavity stands for
the lossless case and a plasmonic cavity for the lossy. The results are depicted in Fig. 3 for
four different detuning values:δ = {−2.25,−2.77,−3.29,−3.81}. Note that these detun-
ings correspond to different values inδth units for the two cases, sinceδth depends onrQ

[Eq. (9)]. For example,δ =−2.25 corresponds to−1.3δth for rQ = 0 and−δth for rQ = 0.3.
Obviously, for the latter case bistability cannot manifestas is evident from Fig. 3(b).

In both cases, the basic trends are the same. When detuning increases (in absolute value),
the input power threshold increases as well. In the losslesscase for example [Fig. 3(a)], for
the lowest detuning considered bistability manifests at 2.3P0, while for the highest at 4P0.
Moreover, note that with increasing detuning the hysterisis loop becomes wider and the max-
imum tranmission level increases leading to lower insertion losses (IL= 10logTmax). The
latter can be explained by the fact that for higher detuning values the operating wavelength
falls farther away from the unperturbed resonant frequency, meaning higher transmission
in the linear regime. Obviously, retaining the input power threshold at low values is es-
sential. A good compromise between low power threshold, satisfactory loop span, and low
insertion losses is attained for detunings in the range{−1.3δth,−1.9δth}, corresponding to
{−2.25,−3.29} for rQ = 0.

Importantly, in the case of lossless structures (rQ = 0) there is always a point in the
low-transmission branch where the transmission is zero, leading to theoretically infinite ER
between bistable states. On the other hand, forrQ = 0.3 the minimum-transmission level
elevates (Tmin ≈ 0.05), limiting the ER to finite values. This elevation is a result of the finite
Qi value; note that it depends solely onrQ and not onδ , as the horizontal dotted line in
Fig. 3(b) indicates.

In order to further understand this behavior, we examine theeffect ofrQ on the bistability
curve by fixing the detuning to a constant value. Three distinct values ofrQ are considered
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(rQ = {0,0.3,0.6}) with the results depicted in Fig. 4. The detuning is set to−3.29 to ensure
that it exceedsδth for all cases ofrQ considered. One can readily observe that asrQ increases,
corresponding to lowerQi values (Qe is considered constant to enable normalizing with a
common characteristic powerP0), the level of minimum transmission increases limiting the
available ER between bistable states. This behavior is inherited from the linear regime: in
the presence of intrinsic losses the transmission of a side-coupled standing-wave resonator
does not vanish on resonance as is the case with lossless systems. This is a distinct trait of
standing-wave resonators; in traveling-wave resonators irrespective of the level of intrinsic
losses one can always get vanishing transmission on resonance by satisfying the critical
coupling condition. Note also that the level of maximum transmission decreases (due to the
decrease ofδ in δth units), further contributing to ER degradation. The maximum achievable
ER drops below the 10 dB limit forrQ > 0.4. ForrQ = 0.6 it is only 7 dB, Fig. 4(b).

Another effect of therQ increase on the bistability loop is the increase in input power
threshold: forrQ = 0 bistability manifests forPin = 3.6P0 whereas whenrQ = 0.6 for Pin =
8P0. This can be explained as follows: as intrinsic losses increase, a greater portion of the
energy coupled to the cavity is dissipated, meaning that less energy is available for inducing
the nonlinear shift. As a result, higher input powers are needed to reach the “switching
point” (marked in Fig. 4 with a circle) where the cavity becomes resonant with the operating
wavelength and a drop to the low-transmission branch occurs. Furthermore, asrQ increases
the detuning decreases inδth units. This means that the span of the hysterisis loop must
decrease, as demonstrated in Fig. 3. Therefore, the “holding point” (marked in Fig. 4 with
a square), corresponding to the minimum power required to remain on-resonance and thus
on the low-transmission branch, experiences an even more pronounced shift towards higher
input powers than the switching point. It is this shift of theholding point that is responsible
for the increase in bistability threshold.

5 System design

In this section, we design the physical system based on the findings of Sections 3 and 4 using
the 3D-VFEM. Specifically, we are interested in a system featuring minimum characteristic
powerP0, high ER between bistable states and low input power threshold for bistability.
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Fig. 5 Parametric analysis with respect to(W1, W2): theκQ2
i product is evaluated for the three lowest-order

modes (m = 1,2,3). For each width combination, lengthsL andL1 = L2 are properly tuned for resonance at
λ0 = 1.55 µm. The optimum point is marked with a circle and corresponds to (W1,W2) = (200,120) nm and
m = 3. Diagonal solid lines indicate the boundary between recess grating(W2 <W1) and protruding grating
regions(W2 >W1). Inset: Top view of the Bragg-grating resonator with relevant geometric parameters.

The demand for minimumP0 translates to maximumκQ2
e product [Eq. (6)], meaning

that high values ofQe are required. On the other hand, for a fixed (finite) intrinsicqual-
ity factor, highQe values lead to highrQ values with a detrimental effect on ER and input
power threshold (Fig. 4). We are thus seeking the highestrQ value for which the ER between
bistable states remains higher than 10 dB, since this is essential for practical applications.
Considering thatrQ < 0.4 for ER> 10 dB (Section 4), we choserQ = 0.3 which in conjuc-
tion with δ =−3.29=−1.46δth leads to an ER of 11.7 dB and a bistability power threshold
of 5.5P0.

Having setrQ equal to a constant value, we can minimize the characteristic powerP0

by maximizingκQ2
i , instead ofκQ2

e . To this end, we study the uncoupled resonator as an
eigenvalue problem (in the linear regime). We conduct a parametric analysis with respect
to W1 andW2, in order to identify the optimum width combination. More specifically, we
vary W1 in the range 180− 320 nm andW2 in the range 100− 320 nm and evaluate the
correspondingκQ2

i product, Fig. 5.W1 values beyond 320 nm are not considered in order to
ensure single-mode operation of the underlying waveguide and avoid beating effects in the
grating. For each (W1,W2) combination, we solve for the three lowest-order cavity modes by
tuning the cavity length to an integer multiple ofλg/2:

L = m
λg

2
= m

λ0

2Re{neff,1}
, (10)

wherem denotes the order of the resonant mode.
Note that special care is exercised to ensure that each(W1,W2) combination results in a

Bragg resonator that meets the necessary conditions for resonance at the desired frequency
(λ0 is set to 1.55 µm). Besides properly adjusting the cavity length, this means specifying
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lengths(L1, L2) to meet the Bragg condition, which, for first-order gratings, is written as

Re{neff,1}L1+Re{neff,2}L2 =
λ0

2
. (11)

This is necessary since each(W1,W2) pair corresponds to different (neff,1, neff,2) values. Note
that in all cases we opt forL1 = L2 = Λ/2.

The results for the three lowest-order modes(m = 1,2,3) are depicted in Fig. 5(a)-(c).
It is clear that theκQ2

i product attains high values for recess gratings(W2 <W1) rather than
protruding ones(W2 >W1) (the boundary between the two regions is marked with a white
line). The optimum combinations of(W1,W2) lie in the small width region (lower left cor-
ner), where theκ parameter is high due to the reduced effective mode volume(κ ∝ 1/Veff).
In addition, one can readily verify that the third-order mode leads to higher values ofκQ2

i
compared to the other ones. This is due to reduced radiation losses (resistive losses are con-
stant irrespective of the cavity length). Higher order modes have also been examined, failing,
however, to achieve higher products and are, thus, not presented. Focusing on the third-order
mode [Fig. 5(c)], we chose the combination (200, 120) nm, since it lies in the region of high
κQ2

i values and, moreover, the width of 200 nm complies with the standard width values of
standard CGS waveguides (Wu et al 2010).

In order to gain better insight into the effect of widthW2 on theκQ2
i product, we examine

κQ2
i along the dashed line in Fig. 5(c), which corresponds toW1 = 200 nm andW2 <W1. The

product variation is depicted in Fig. 6(a), along with the respective behavior of each quantity.
On one hand,κ monotonically decreases withW2 due to the increase in mode volume: a
less pronounced corrugation results in a lower reflection coefficient and, consequently, in
stronger field penetration into the grating. On the other hand, Qi exhibits a non-monotonic
behavior, peaking forW2 ≈ 140 nm and decreasing for higher values. In total, theκQ2

i
product, adopting the non-monotonic behavior ofQi, peaks for aW2 value of 120 nm.

Let us now examine the behavior ofQi in detail. Obviously, in a lossy, open resonator
like the one examined, intrinsic losses are composed of resistive and radiation losses. For
the respective quality factors:Q−1

i = Q−1
res+Q−1

rad. Qrad can be calculated by momentarily
neglecting resistive losses, i.e., setting Im{εAg} = 0, and then used to calculateQres. All
three quality factors are depicted in Fig. 6(b). Notice thatQi is bound by resistive (radiation)
losses at lower (higher)W2 values. More specifically,Qres varies in the range 500− 720.
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The increase withW2 can be explained by the fact that for the underlying NLCGS waveg-
uide resistive losses decrease with width. For the limitingvalueW2 = W1 = 200 nm the
corrugation vanishes and the Bragg-grating resonator reduces to a Fabry-Pèrot (FP) cavity
with a total length of 16Λ + L+ 16Λ . In such cases,Qres can be directly estimated from
the field profile of the underlying waveguide, as demonstrated in Appendix A. Returning
to Fig. 6(b),Qrad exhibits a much more pronounced variation compared toQres. It peaks
at 130 nm, where both high grating reflectivity and reduced scattering at the cavity-grating
interfaces are achieved. LowerW2 values result in increased scattering at the cavity-grating
interfaces, whereas higherW2 values lead to reduced grating reflectivity, permitting a signif-
icant portion of power to be radiated at the grating ends. ForW2 > 170 nm, radiation losses
are substantially increased and become the factor limitingQi, instead of resistive losses.

Having concluded the design of the uncoupled resonator, thecomplete set of geometrical
parameters are(W1,W2) = (200,120) nm,L = 1 µm (3λg/2), andL1 = L2 =Λ/2= 175 nm.
The resonator is characterized byκ = 0.11 andQi = 500, withQres= 560 andQrad= 4300
(Fig. 6). By employing the definition in (Tsilipakos and Kriezis 2014) we can obtain the
effective mode volume:Veff = 0.1 µm3. Note that this value is 5 times smaller than that of
the disk resonator in (Tsilipakos and Kriezis 2014). As anticipated, the Bragg resonator is
able to confine the optical mode in small volumes, due to its standing-wave nature. This
results in high values ofκ , promising to reduce the power threshold. However, the intrinsic
quality factor, which appears squared in Eq. (6), is limitedto 500, whereas the NLCGS-
based disk resonator in (Tsilipakos and Kriezis 2014) features a quality factor of 1750. This
has a detrimental effect on power threshold, which becomes even more pronounced by the
fact that for standing-wave resonators it isQe < Qi that appears in the power threshold
expression, in contrast with the traveling-wave case. The characteristic power for the Bragg
resonator isP0 = 1.34W , approximately 6 times higher compared to the disk.

The inability of the proposed structure to achieve higher quality factors can be attributed
to the lack of a beneficial compromise between radiation and resistive losses. In contrast to
radiation losses, which can be reduced by proper design [Fig. 6 (b)], the resistive ones con-
sist an inevitable bottleneck toward the realization of high quality factors. A closed-form
relation calculatingQres for a lossy Fabry-Pèrot resonator, i.e., a standing-wave resonator
comprised of a uniform nanophotonic waveguide segment between (partially) reflecting mir-
rors, is derived in Appendix A. Using this relation to obtainan estimate of the quality factor
anticipated in our Bragg resonator implementation we find a value of 720, consistent with
the value forW2 → 200 nm in Fig. 6 (b). Note, finally, that the high value ofQrad obtained
verifies that the number of periods selected (N = 16) is a sound choice. There is no need to
employ more periods, since it is resistive losses that limittheQi value.

The last step in the design process is specifying the coupling gapg between resonator
and waveguide. As already mentioned, the value ofg should satisfyrQ = 0.3, in order to
obtain an ER exceeding 10 dB. By solving the eigenvalue problem for the coupled res-
onator, the loaded quality factorQℓ is calculated as a function ofg in the range 0.1-0.5µm
[Fig. 7(a)]. Then, we can determineQe throughQ−1

ℓ = Q−1
i +Q−1

e and, subsequently,rQ.
The conditionrQ = 0.3 is satisfied for a coupling gap of 210 nm. In Fig. 7(b) the electric
field distribution is plotted at thexy plane halfway inside the polymer layer. Notice the third-
order mode supported by the cavity. The mode decays to the neighboring waveguide towards
both directions. As a result, a standing-wave pattern is formed along the interaction region.
In the arced waveguide segments no coupling with the resonator is possible and a traveling
wave is observed.
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6 Performance Assessment

Having designed the Bragg-grating resonator, we can assessits performance. In Fig. 8 we
plot the bistability curve for the optimum configuration:rQ = 0.3 andδ = −3.29 corre-
sponding to an operating wavelength of 1567 nm. This time we plot the output power against
Pin, instead of the transmission. Both axes are denormalized with P0 = 1.34W , specified in
Section 5. Bistable states (A and A′) with an ER of 11.7 dB appear at an input power of
PA = 7.5 W. Switching between them can be accomplished through points B and C which
lie beyond and below the bistability regime, respectively.This is shown in Fig. 9, where basic
memory operation is demonstrated with set and reset pulses.More specifically, second-order
super-gaussian pulses with a FWHM of 1.2 ps are utilized to toggle the system state. The
first pulse toggles the system to the low-output state (A′) by following the route ABA′ on the
bistability curve. The application of a second pulse (whichis actually a dip in input power)
returns the system to the high output state (A) through pointC. Importantly, in both tran-
sitions the cavity responds in approximately 2 ps, rendering the proposed structure suitable
for ultrafast memory/switching applications.
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In Fig. 9 the dynamic response has been obtained by using Eqs.(3a) and (3b). More
specifically, using Eqs. (1) and (5), Eq. (3a) transforms into

dã
dt

=− j

(

ω −ω0+
1

τ2
e P0

|ã|2
)

ã−
(

1
τi
+

1
τe

)

ã+ j

√

1
τe

s̃in, (12)

where ˜a and ˜s denote slowly varying envelope functions. After calculating ã through Eq. (12),
s̃out = s̃in + j

√

1/τe ã, i.e., Eq. (3b), is used to obtain the output power.

7 Conclusion

To summarize, we have proposed a hybrid plasmonic Bragg-grating resonator for optical
bistability. The structure is compact and can be readily interfaced with standard silicon-
photonic waveguides. It offers tight mode confinement with the effective mode volume of the
supported mode being only 0.1 µm3 ≈ 0.15(λ/nD)

3. Although mode volume is significantly
reduced compared to traveling-wave implementations (Tsilipakos and Kriezis 2014), the
power threshold could not be improved due to resistive losses limiting the quality factor to
low values. More specifically, bistable operation with an ERof 11.7 dB requires an input
power of 7.5 W.

It is thus expedient to examine alternative standing-wave resonator implementations
for reducing the power threshold and matching, or even exceeding, the performance of
traveling-wave resonators. To this end, photonic crystal implementations with 2D periodicity
can be a favorable approach. More specifically, point-defect cavities with minimal penetra-
tion of the field components in the surrounding crystal structure could provide significantly
reduced effective mode volumes and, thus, power thresholds.

In addition, since resistive loss constitutes the ultimatelimiting factor for achieving low
input power thresholds, it is worth examining alternative waveguiding configurations for
the implementation of bistable components, based on both traveling- and standing-wave
resonators. A promising candidate is long-range hybrid plasmonic waveguides (Bian and
Gong 2014; Ma and Helmy 2014), which based on the principle ofa symmetric waveguiding
environment can exhibit very high propagation lengths.
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A Appendix

Suppose we have a standing-wave resonator formed by any lossy nanophotonic waveguide segment bound
by (partially) reflective mirrors, i.e., a generalized Fabry-Pèrot (FP) resonator. An implementation based on
the NLCGS waveguide is depicted in Fig. 10(a). Our goal is to derive an expression for calculatingQres by
relying solely on the mode profile of the underlying waveguide, i.e., the solution of a 2D eigenvalue problem
instead of a 3D one. This is possible since the structure is uniform along the z-axis.

Based on the definition of the quality factor,Qres can be expressed as the ratio of the energy stored in the
resonator to the energy dissipated per optical cycle due to ohmic (resistive) losses in the metal. Hence,

Qres= ω0
Wstored

Pohmic
= ω0

∫∫∫

V

[

1
4

Re

{

d(ωε)
dω

}

|E(x,y,z)|2 + 1
4

µ |H(x,y,z)|2
]

dV
∫∫∫

V

1
2

Re{E(x,y,z)J∗(x,y,z)} dV
, (13)

whereJ is the electric current density andV denotes the volume of the resonator. Any lossy materials (in-
cluding metals) can be modeled using a complex dielectric constant and, thus, the electric current density can
be written asJ = σE(x,y,z) = ω0 Im{ε}E(x,y,z). If we additionally assume that the materials can be treated
as non-dispersive, which is justified by the absence of material resonances near the operation wavelength of
1.55µm, Eq. (13) takes the form

Qres=
1
2

∫∫∫

V

[

Re{ε}|E(x,y,z)|2 +µ |H(x,y,z)|2
]

dV
∫∫∫

V
Im{ε}|E(x,y,z)|2 dV

. (14)

Now, due to structure uniformity along the z-axis, the standing waveform[E(x,y,z),H(x,y,z)] possesses a
cross-sectional field distribution identical to the mode profile [e(x,y),h(x,y)] of the underlying waveguide. In
other words, we can writeE(x,y,z) = e(x,y) f (z) andH(x,y,z) = h(x,y) f (z), where f (z) is a scalar function
denoting the standing-wave pattern. Separating the z-dependence and simplifying we arrive at

Qres=
1
2

∫∫

S

[

Re{ε}|e(x,y)|2 +µ |h(x,y)|2
]

dS
∫∫

Sm

Im{ε}|e(x,y)|2 dS
, (15)

whereSm denotes the cross-section of metal regions. Note that the nominator and denominator in Eq. (15)
represent stored and dissipated energiesper unit length.

We have, thus, derived a closed-form expression allowing for calculating the resistive quality factor of
a general waveguide-segment standing-wave resonator based on the solution of the two-dimensional eigen-
value problem of the underlying waveguide. For the purpose of testing the accuracy of the derived expres-
sion through an example, we consider the NLCGS-based resonator in Fig. 10(a). TheQ2D

res values calcu-
lated by Eq. (15) are compared with the quality factors extracted from the complex eigenfrequency of the
three-dimensional eigenvalue problem (Q3D

res), Fig. 10(b). Note that for the 3D problem we have considered
perfectly-reflecting (PEC) mirrors. In this case, the resonator does not suffer radiation losses andQres coin-
cides withQi. Obviously, the agreement is very good. Note that the two approaches are compared for a wide
range of widths (180− 380 nm) and two distincthD values (30 and 50 nm) to illustrate the validity of the
approach.

Although Eq. (15) holds for cross-sectionally uniform standing-wave resonators, it is valuable for esti-
matingQres in resonators with distributed reflectors as well. Clearly,the estimate is more accurate in cases
of shallow grating corrugation or weak field penetration in the distributed reflectors. More specifically, in
cases of shallow gratings the entire resonator length (including gratings) can be perceived as the FP cavity,
since field penetration in the gratings is bound to be strong.Due to the small corrugation, the structure is
nearly uniform. On the other hand, in cases of weak penetration, although the corrugation may be large, the
mode is located primarily in the central region, which is obviously uniform. Here it is only the central part of
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Fig. 10 (a) CGS-based standing-wave resonator consisting of a waveguide segment with dimensionsW , L
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values of 30 and 50 nm. The 2D approach of Eq. (15) is compared with the quality factor extracted from the
complex eigenfrequency of a 3D eigenvalue problem. The close agreement between 2D and 3D calculations
verifies the validity of Eq. (15).

the resonator that is perceived as the FP cavity. In both cases, the mode resides in a nearly-uniform region,
meaning that an accurate estimate is anticipated.

As a final remark, the idea of a closed-form expression able topredict theQ factor of a standing-wave
resonator by solving an eigenvalue problem of the underlying waveguide is actually familiar from transmis-
sion line theory (Pozar 2005). More specifically, the quality factor of a resonator formed by a closed- or
open-circuited (TEM) transmission line segment, is approximated byβ/2α , whereβ (α) is the propaga-
tion (attenuation) constant of the underlying waveguide, calculated by solving the corresponding eigenvalue
problem. Consequently, Eq. (15) can be thought of as a generalization of theβ/2α relation. The former ac-
counts for the complex nature of the hybrid nanophotonic modes, whereas the latter holds only for TEM or
quasi-TEM waveguides (e.g., microstrips).
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