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Abstract Optical bistability with a hybrid silicon-plasmonic configation consisting of a
nonlinear Bragg-grating resonator side-coupled with avimsgeguide is theoretically inves-
tigated. The nonlinear response is studied with a modetengdéwork combining perturba-
tion theory and temporal coupled-mode theory, fed withdktamensional finite element
method simulations. For the CW case, a general closed-fapmession describing the non-
linear response is derived, valid for finite intrinsic qtyaliactors and arbitrary coupling
conditions. This generalization is necessary for studyitagmonic resonators which are
inherently lossy. The effect of the parameters enterindn@nexpression on the bistability
curve is thoroughly investigated and the physical systeatcordingly designed so as to
exhibit minimum power threshold and an extinction ratioAzstn bistable states exceeding
10 dB. Finally, the temporal dynamics are assessed. Thersysin toggle between bistable
states in approximately 2 ps and is thus suitable for uktafeemory/switching applications.

Keywords Nonlinear optics: Optical bistabilty- Plasmonics Hybrid plasmonic
waveguides Bragg-grating resonators

PACS 42.65.Pc 42.82.-m

1 Introduction

Nonlinear phenomena in guided-wave plasmonics are betegsively investigated, due
to their potential for implementing tunable/dynamic irmeggd components (Kauranen and
Zayats 2012). In particular, phenomena based on the thitef susceptibilityy (), can be a
favorable approach, since they feature ultrafast respandellow for all-optical operation.
Interestingly, the combination of nonlinearity and optitgedback in resonant nonlinear
structures can lead to bistable behavior. In turn, thisreféeroute towards implementing
memory, switching or logic-gate functions (Tanabe et al®208meida and Lipson 2004;
Xu and Lipson 2007). What is more, the power requirementspaoed to nonresonant,
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directional coupler approaches (Milian and Skryabin 2Kriesch et al 2012; Pitilakis and
Kriezis 2013) can be greatly reduced, since the intensitg4up in the resonator translates
to high power densities enhancing nonlinear effects.

To date, bistability studies in plasmonics have mainly hest around two-dimensional
geometries with the metal-insulator-metal (MIM) wavegu{#annipitiya et al 2011; Wang
et al 2011; Xiang et al 2014; Shiu et al 2014). Addressing tednfor practical, three-
dimensional bistable components, we have recently exahtime manifestation of optical
bistability with nonlinear traveling-wave (disk) resooet made of hybrid plasmonic waveg-
uides (Tsilipakos and Kriezis 2014). The presence of then&®r has led to reduced input
power requirements, indicating the potential of bistaldectures for practical applications.
Standing-wave resonators can be also utilized for the tagkct, such resonators can con-
fine the optical mode in smaller volumes (since they do ngt oel waveguide bending),
therefore promising to further reduce the power threshietat. example, in the context of
hybrid plasmonic wavegudes, tight mode confinement has éemonstrated with 1D pho-
tonic crystal (hanobeam) resonators, investigated fandaapplications (Xu and Shi 2013).
It is, thus, useful to investigate the prospect of standiage resonators for optical bistabil-
ity and compare their performance with traveling-wave ctrces.

In this work, we focus on a nonlinear standing-wave resarfatmned with Bragg re-
flectors. As in (Tsilipakos and Kriezis 2014), we base thesgtal implementation on a
nonlinear hybrid plasmonic waveguide, which favors the ifieatation of nonlinear effects
through an advantageous combination of nanoscale confirteme relatively low loss. The
resonator is side-coupled to the waveguide, since thislicmupcheme is known to result
in higher extinction ratios (ERs) between bistable statespared to direct coupling (Yanik
et al 2003). The nonlinear response of the resonator-waegystem is studied by means
of a theoretical framework combining perturbation theang &emporal coupled-mode the-
ory (CMT), fed with rigorous, full-wave simulations of thiméar system conducted with
the three-dimensional vectorial finite element method Y@EM). Based on the simulation
results, we identify the geometrical parameters leadiraptomum performance and design
the physical system accordingly. Subsequently, the padaoce is assessed in both CW and
pulsed conditions.

The paper is organized as follows: The system under studseisepted in Section 2.
In Section 3 the theoretical framework is introduced ancegalel osed-form equations de-
scribing the CW nonlinear response are derived, valid fatefintrinsic quality factors and
arbitrary coupling conditions. The effect of the parametartering in the theoretical model,
namely, the detuning and intrinsic loss factorg, on the bistability curve are investigated
in Section 4. Based on the findings of this Section, we desigmphysical system in Section
5. Its performance in terms of required input power, extorctatio between bistable states,
and response time is assessed in Section 6. Finally, a coicland outlook is given in
Section 7.

2 Nonlinear Bragg-grating resonator

The system considered is based on the nonlinear conduagesiticon (NLCGS) waveguide
introduced in (Pitilakis et al 2012). The waveguide crosetion is depicted in Fig. 1(a). It
is similar to a standard CGS waveguide (Wu et al 2010), wighetkception that a nonlinear
polymer is occupying the low-index “gap” between high-irdemiconductor and metal
regions, instead of silica. More specifically, the polymkctwmice is DDMEBT (Esembeson
et al 2008), which apart from being highly nonlineas & 1.7 x 10~1” m? /W) has moreover
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Fig. 1 (a) Cross-section of nonlinear CGS waveguide. The gap leetwitver and silicon layers is occupied
by the nonlinear polymer DDMEBT. The heights of the threeetaycomprising the guiding ridge angg =
100 nm,hp = 30 nm, andchsj = 340 nm, respectively. The waveguide widitis 200 nm. (b) Distribution of
electric field norm |E|) for the fundamental mode (T$d) at 155 um.

proven compatible with nanophotonic integration (Koos Ie2@09). The metal is silver,
since it features lower resistive losses compared to gdhit;iwis of paramount importance
in nonlinear applications. The linear refractive indices the considered materials at the
telecom wavelength of. 35 um arengio, = 1.45,ns; = 3.48,np = 1.8, andnag = 0.145—
j11.4 (Johnson and Christy 1972).

Regarding geometrical parameters, the dimensions of tlwersicore arew x hgj =
200 nmx 340 nm, typical for CGS waveguides (Wu et al 2010). Impolyanbe 340-nm
height is customary for silicon photonic waveguides opegadn the TM mode, thus facil-
itating the interfacing of the CGS waveguide with standalidas photonic circuitry. The
polymer layer is 30-nm high, in order to ensure tight moddfioement, while for the silver
layerhag = 100 nm.

The fundamental TM mode supported by the NLCGS waveguidepgted in Fig. 1(b).
More specifically, we plot the electric field norm, as obtdimeth a FEM eigenmode solver.
The mode is almost entirely located inside the nanosizeghpe layer. The effective mode
area, calculated throughy 2 ([[ |E|2dxdy)?/ [[ |E|*dxdy, is only Q03 unm?. The effective
index at 155 um isneg = 2.382— j0.0022, with the imaginary part corresponding to a prop-
agation length (the-folding distance of optical intensity) dfprop = 56 m. On the whole,
the considered waveguide can provide subwavelength coméniewhile maintaining prop-
agation loss at a relatively low level. Both of these traits @ssential for the manifestation
of nonlinear effects meaning that the NLCGS waveguide i$ sugled to our application.

The NLCGS-based standing-wave resonator structure exahiindepicted in Fig. 2.
A cavity with dimensionsW, L) is formed betweemN-period-long Bragg reflectors with
a pitchA. More specifically, each period of the reflector consistswaf segmentsA =
L1+ Lp) with widthsWy =W andWs, respectively. Clearly, for a recess grating like the one
in Fig. 2 it holdsW, < W, while for a protruding grating it would b5, > W;. The cavity
is side-coupled to a standard CGS waveguige=(200 nm) through a coupling gap The
waveguide interacts with the resonator for a length equidlé@xtent of the cavitylL(), after
which the waveguide is curved away from the resonator inromevoid coupling along
the grating regions. AR value of 2um is adopted, for which radiation losses are negligible
(Ketzaki et al 2013). The cavity\(, L) and grating\(\, =W, W,, A) geometrical parameters,
as well as the coupling gagp will be determined in Section 5 after identifying the desig
specifications in Section 4. For the number of grating peviac fixN at 16, having verified
it constitutes a favorable compromise between high refiiégtind compactness.
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Fig. 2 NLCGS-based Bragg-grating resonator coupled to a CGS busguale through coupling gag
A cavity with dimensions\{/, L) is formed betweerN-period-long Bragg reflectors with a pitch. The
waveguide is curvedR= 2 um) to avoid coupling along the grating region.

3 Modeling framework

First, we briefly discuss the modeling framework employelte fionlinear response of the
resonator-waveguide system is studied with a theoretiaaléwork combining perturbation
theory and temporal coupled-mode theory (Soljacic etGl22 Bravo-Abad et al 2007).

This approach is much simpler compared to rigorously sitmgathe three-dimensional
nonlinear system and still produces very accurate results, as hasdmmanstrated with

photonic crystal cavities (Soljacit et al 2002; Yanik €2803; Bravo-Abad et al 2007).

Rigorous full-wave simulations of the 3D system still need¢ performed in order to feed
the theoretical model, albeit they are conducted inlthear regime. In this work, these
simulations are carried out with the 3D-VFEM (Tsilipakosae2011).

This framework has already been developed and successfyiijed to side-coupled
standing-wave cavities in the context of photonic crystaictures (Yanik et al 2003). How-
ever, the derived closed-form expression describing ther©winear response assumes an
infinite intrinsic quality factor for the resonator, as ipigally the case with photonic crystal
cavities. Here, we outline the formulation for the purpokardving at a general closed-form
expression, valid for finite intrinsic quality factors andi&rary coupling conditions. This
generalization is necessary for studying plasmonic reésasiavhich are inherently lossy.

Applying perturbation theory, the resonance shift due to Kenlinearity can be castin
the form (Bravo-Abad et al 2007)

Aw 1 W 3

whereWes= (£0/2) [[, N?(r) |Eo|?aV is the total energy stored in the cavity (on resonance
stored electric and magnetic energies are equal), Bg{h) denoting the unperturbed elec-
tric field in the structure. In Eq. (1) we have introduced tloalmear feedback parameter
K; a parameter measuring the overlap between nonlineariadatad field distribution. It is
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defined through (Bravo-Abad et al 2007; Soljagic et al 2002

< (EY %///v n2(1)rP (1) [E0~E02+22E04} av
) [% ///v nz(r)‘E0|2dV} npax

with N5 being the maximum value afz(r). k is a dimensionless parameter inversely
proportional to the effective mode volume. Moreover, itrisliépendent of the nonlinear
material (due to the normalization wit#]'®), the peak power and the external quality factor
as long as they do not dramatically affect the mode profile.

The Kerr-induced frequency shifiw of Eq. (1) can be readily introduced in a temporal
CMT framework (Haus 1984; Fan et al 2003). Then, the equati@scribing a side-coupled
standing-wave resonator are given by

)

da . 11 . [1
Eﬂ(amAw)a—;ia—T—eaﬂ\/T—esn, (3a)

1
Sout=Sn+ ]|/ —a, (3b)
Te
o1
Sef = jy/ —2&, (30)
Te

wherea = a(t) is the mode amplitude, normalized so thaf = Wes In the same way,
input (sn), output &oyy) and reflectedger) wave amplitudes are normalized so theit ex-
presses guided power. Finallye denote intrinsic and external (coupling) photon lifetimes
respectively, associated with the respective qualityofacthroughQ = w1 /2.

Assuming a harmonic time dependence {gxpt}), we can calculate the steady state
(d/dt = 0) transmitted and reflected power by substituting Eq. (3a3li) &nd (3c), respec-
tively, as

_ Pt _ rg+ (0 — Tedw)?
T= Pn (14+10)2+ (0 — TeAw)?’ (4a)
_ Pt _ 1 (4b)

Pn (14r19)2+ (0 — TeAw)?’

In Egs. 4,0 = Te(w— wy) is the normalized detuning ang = T¢/T; = Qe/Q; theintrin-
sic loss factor. The latter is the parameter that generalizes the anakstmmpassing the
possibility of finite intrinsic quality factors. Clearlypilossless caséd — « andrg = 0.

In order to construct the hysterisis loop using Egs. (4), vet fieed to express the stored
energy (contained iAw) in terms of input, output and/or reflected power. More sieadly,
by recalling the definition of the quality factor as the fiantbetween stored energy over
dissipated power per optical cycle we can wide = wp Wees/Pe, WhereP: is the power
decaying to the neighboring waveguide. Considering thetradéng-wave resonator radiates
equally in both directions of the bus waveguidk,can be expressed in terms of reflected
power asP. = 2Ret. Note that expressings in terms ofPy; instead ofPt, as exercised
in directly-coupled cavities (Soljacic et al 2002), wolde desirable but is not possible.
In side-coupled cavitieBy; is not determined solely by the stored energy decaying to the
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waveguide but by the power carried in the bus waveguide ak[RBgl (3b)]. Combining
Qe = wo Wees/ (2Ref) With Eg. (1), we get

TAw = f%, (5)
where
Ry = ﬁ ©)
(2 e

is the characteristic power of the system. This paramet&rugmost importance, since it is
associated with the threshold for bistability. Notice tRafs inversely proportional to the
k Q3 product. Obviously, in practical applications our goabisrinimizeR, or, equivalently,
maximizeKQg, in order to achieve low-power bistable action.

Using Eg. (5) in Egs. (4) and introducing normalized guidedigersp = P/P, we arrive

at
pLUt — r(% + (6 + pref)2 (7a)
Pin B (1+ rQ)2+ 0+ pref)27
Pref _ ! (7b)

Pin (1+rQ)2+(5+ pref)Z.

Egs. (7) constitute a closed-formx2 system of polynomial equations describing the CW
nonlinear response and allowing for constructing the migseloop. The system can only
be decoupled in the case of infinite intrinsic quality factehere intrinsic losses are zero
and prer can be expressed in terms of input and output powengeas- pin — Pout- TheN,
Eq. (7a) can be used for describing the optical response, (@anik et al 2003).

Eqg. (7b) predicts bistable behavior for the reflected powkenwit admits three real,
positive solutions. These solutions are inherited in Eg),(@iving the same bistable behav-
ior in the output. From a mathematical perspective, bitglmiccurs when the slope of the
Pref — Pin CUrve is infinite, indicating that more than one solution tlee same abscissa is
possible. This is expressed agyet/0 pin — o, or equivalentlyd pin /9 pret = 0. Applying
the latter in Eq. (7b) we reach

3PZs+ 40 Pret + [62+ (1+10)?] = 0. (8)

Bistability occurs when the discriminant of Eq. (8) is po&t(guided power must be a real
number) and moreove¥ < 0 (ensures that the roots are positive numbers), leadinigeto t
condition

5<—(1+19)V3= —&n. )

Equation (9) states that bistability manifests (for appiip input power levels) when the
normalized detuning is negative and exceeds the thresladle wf (1 +rq)+/3. Note that
A depends omg; it reduces to the constant value¢B only in the lossless case.
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Fig. 3 Effect of detuning on optical response. (g)= 0 with the respective threshold beitg = V3~ 1.73,

(b) rg = 0.3 with the respective threshold beirdg, = 1.3v/3 ~ 2.25. Solid lines represent stable states,
whereas dashed lines represent unstable states (althoedictpd by Eqgs. (7) they cannot be practically
observed). A3d| increases, bistability manifests for higher input powers.

4 Effect of model parameters on bistability curve

Let us now investigate the effect of parametérandrqg on the optical response for the
purpose of identifying the values that lead to optimum pannce. We are interested in
low input power thresholds and high extinction ratios betwbistable states.

We first examine the effect of normalized detunidigFor this purpose, we fixg at
two distinct values, namelyg = 0 andrg = 0.3, representing the absence and presence of
intrinsic losses, respectively. In physical system teranghotonic crystal cavity stands for
the lossless case and a plasmonic cavity for the lossy. Budtseare depicted in Fig. 3 for
four different detuning valuesd = {—2.25—-2.77,—3.29,—3.81}. Note that these detun-
ings correspond to different values &, units for the two cases, sindg, depends omg
[Eq. (9)]. For exampled = —2.25 corresponds te-1.36 for rqo = 0 and—dy, for ro =0.3.
Obviously, for the latter case bistability cannot manifesis evident from Fig. 3(b).

In both cases, the basic trends are the same. When detuniegses (in absolute value),
the input power threshold increases as well. In the losslass for example [Fig. 3(a)], for
the lowest detuning considered bistability manifests.aPg, while for the highest ati.
Moreover, note that with increasing detuning the hystef@p becomes wider and the max-
imum tranmission level increases leading to lower insertasses (IL= 10logTnax). The
latter can be explained by the fact that for higher detunimiges the operating wavelength
falls farther away from the unperturbed resonant frequemmaning higher transmission
in the linear regime. Obviously, retaining the input powreshold at low values is es-
sential. A good compromise between low power thresholdsfaatory loop span, and low
insertion losses is attained for detunings in the rafig&.3d,, —1.9d}, corresponding to
{—2.25,—3.29} forro = 0.

Importantly, in the case of lossless structures £ 0) there is always a point in the
low-transmission branch where the transmission is zeadlitg to theoretically infinite ER
between bistable states. On the other handydor 0.3 the minimum-transmission level
elevates Tmin = 0.05), limiting the ER to finite values. This elevation is a iesiithe finite
Qi value; note that it depends solely og and not ond, as the horizontal dotted line in
Fig. 3(b) indicates.

In order to further understand this behavior, we examinetieet ofrg on the bistability
curve by fixing the detuning to a constant value. Three distialues ofrg are considered
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(ro ={0,0.3,0.6}) with the results depicted in Fig. 4. The detuning is set829 to ensure
that it exceedsy, for all cases of o considered. One can readily observe thatgiscreases,
corresponding to lowe®; values Qe is considered constant to enable normalizing with a
common characteristic powé), the level of minimum transmission increases limiting the
available ER between bistable states. This behavior igitekdefrom the linear regime: in
the presence of intrinsic losses the transmission of acideted standing-wave resonator
does not vanish on resonance as is the case with losslesmsythis is a distinct trait of
standing-wave resonators; in traveling-wave resonatmespective of the level of intrinsic
losses one can always get vanishing transmission on resergnsatisfying the critical
coupling condition. Note also that the level of maximum sraission decreases (due to the
decrease od in &y, units), further contributing to ER degradation. The maximachievable
ER drops below the 10 dB limit farg > 0.4. Forrg = 0.6 it is only 7 dB, Fig. 4(b).

Another effect of theg increase on the bistability loop is the increase in input grow
threshold: forrg = 0 bistability manifests foR, = 3.6F, whereas wheng = 0.6 for B, =
8R. This can be explained as follows: as intrinsic losses aw@ga greater portion of the
energy coupled to the cavity is dissipated, meaning thatdasrgy is available for inducing
the nonlinear shift. As a result, higher input powers arededeto reach the “switching
point” (marked in Fig. 4 with a circle) where the cavity be@smwesonant with the operating
wavelength and a drop to the low-transmission branch océurshermore, asg increases
the detuning decreases &, units. This means that the span of the hysterisis loop must
decrease, as demonstrated in Fig. 3. Therefore, the “lploidimt” (marked in Fig. 4 with
a square), corresponding to the minimum power requiredrt@ie on-resonance and thus
on the low-transmission branch, experiences an even moropnced shift towards higher
input powers than the switching point. It is this shift of th@ding point that is responsible
for the increase in bistability threshold.

5 System design

In this section, we design the physical system based on ttiadjs of Sections 3 and 4 using
the 3D-VFEM. Specifically, we are interested in a systemufiéag minimum characteristic
powerPy, high ER between bistable states and low input power thidsbobistability.
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Fig. 5 Parametric analysis with respect(ii, W»): the KQiZ product is evaluated for the three lowest-order
modes (h= 1,2, 3). For each width combination, lengthsandL; = L, are properly tuned for resonance at
Ao = 1.55 um. The optimum point is marked with a circle and correspond¥\i,\Wo) = (200, 120) nm and
m= 3. Diagonal solid lines indicate the boundary between megeating(Ws < W) and protruding grating
regions(Ws > W, ). Inset: Top view of the Bragg-grating resonator with refévgeometric parameters.

The demand for minimuni®, translates to maximurr Q3 product [Eq. (6)], meaning
that high values of) are required. On the other hand, for a fixed (finite) intrirgiml-
ity factor, highQe values lead to highg values with a detrimental effect on ER and input
power threshold (Fig. 4). We are thus seeking the highggalue for which the ER between
bistable states remains higher than 10 dB, since this is1géak#or practical applications.
Considering thatg < 0.4 for ER> 10 dB (Section 4), we chosg = 0.3 which in conjuc-
tion with = —3.29= —1.464y, leads to an ER of 17 dB and a bistability power threshold
of 5.5R,.

Having setrg equal to a constant value, we can minimize the charactepsiverPy
by maximizingkQ?, instead ofk Q3. To this end, we study the uncoupled resonator as an
eigenvalue problem (in the linear regime). We conduct arpatdc analysis with respect
to Wy andWs, in order to identify the optimum width combination. Moreesffically, we
vary Wy in the range 186- 320 nm and\; in the range 106- 320 nm and evaluate the
correspondingQ? product, Fig. 5\ values beyond 320 nm are not considered in order to
ensure single-mode operation of the underlying waveguidieazoid beating effects in the
grating. For eachWy,W,) combination, we solve for the three lowest-order cavityesby
tuning the cavity length to an integer multiple &f/2:

Ag Ao

L=m==

A 10
2 ~ "2Re(ners) (10)

wherem denotes the order of the resonant mode.

Note that special care is exercised to ensure that @&cW5) combination results in a
Bragg resonator that meets the necessary conditions fonaese at the desired frequency
(Ao is set to 155 um). Besides properly adjusting the cavity length, this nsespecifying
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Fig. 6 (&) QuantitiesQ;, k, and kQ? along the dashed line in Fig. 5(c). The maximw®®? product is
attained forW, = 120 nm YWy = 200 nm). (b) Decomposition d®; into Qres and Qrag. Qi is bound by
resistive (radiation) losses at lower (high@# values.

lengths(L1, L) to meet the Bragg condition, which, for first-order gratingswritten as

A
Re{nesr 1}L1 + Re{Ner2 Lo = (11)

Ao
>
This is necessary since eahi, W) pair corresponds to differentds 1, Neft 2) values. Note
that in all cases we opt fdr; =L, =A /2.

The results for the three lowest-order modes= 1,2, 3) are depicted in Fig. 5(a)-(c).
Itis clear that thecQ? product attains high values for recess gratifys < W) rather than
protruding onegW, > W) (the boundary between the two regions is marked with a white
line). The optimum combinations @¢¥Vi,W,) lie in the small width region (lower left cor-
ner), where th& parameter is high due to the reduced effective mode volixme 1/Ves).

In addition, one can readily verify that the third-order raddads to higher values afQ?
compared to the other ones. This is due to reduced radiatsses$ (resistive losses are con-
stant irrespective of the cavity length). Higher order nolave also been examined, failing,
however, to achieve higher products and are, thus, notmesse~ocusing on the third-order
mode [Fig. 5(c)], we chose the combination (200, 120) nntesitlies in the region of high
KQi2 values and, moreover, the width of 200 nm complies with thaddrd width values of
standard CGS waveguides (Wu et al 2010).

In order to gain better insight into the effect of width on thek Q? product, we examine
kQ? along the dashed line in Fig. 5(c), which correspond&ite=- 200 nm and\b < W. The
product variation is depicted in Fig. 6(a), along with thegective behavior of each quantity.
On one handk monotonically decreases withb, due to the increase in mode volume: a
less pronounced corrugation results in a lower reflecticeffimdent and, consequently, in
stronger field penetration into the grating. On the othedh&n exhibits a non-monotonic
behavior, peaking foW\, ~ 140 nm and decreasing for higher values. In total, i@
product, adopting the non-monotonic behaviofpfpeaks for 3\, value of 120 nm.

Let us now examine the behavior @f in detail. Obviously, in a lossy, open resonator
like the one examined, intrinsic losses are composed détiesiand radiation losses. For
the respective quality factor€,” 1= Qe+ Qr;(lj. Qrag can be calculated by momentarily
neglecting resistive losses, i.e., setting{lxy} = 0, and then used to calcula@es. All
three quality factors are depicted in Fig. 6(b). Notice tBais bound by resistive (radiation)
losses at lower (highel\, values. More specificallyQes varies in the range 500 720.
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The increase witM, can be explained by the fact that for the underlying NLCGSegav
uide resistive losses decrease with width. For the limitiape W> = Wy = 200 nm the
corrugation vanishes and the Bragg-grating resonatorcestio a Fabry-Perot (FP) cavity
with a total length of 18 + L + 16A. In such casees can be directly estimated from
the field profile of the underlying waveguide, as demonstrateAppendix A. Returning
to Fig. 6(b), Qrag €xhibits a much more pronounced variation compare@tg It peaks
at 130 nm, where both high grating reflectivity and reducexdtedng at the cavity-grating
interfaces are achieved. Lowdé values result in increased scattering at the cavity-gyatin
interfaces, whereas highéé values lead to reduced grating reflectivity, permittinggm#i
icant portion of power to be radiated at the grating endsV¥ar 170 nm, radiation losses
are substantially increased and become the factor limi@@ingnstead of resistive losses.

Having concluded the design of the uncoupled resonatocdimplete set of geometrical
parameters ar@V;,Wo) = (200,120 nm,L =1 um (3Ag/2),andLy =Ly =A/2=175nm.
The resonator is characterized by= 0.11 andQ; = 500, withQes = 560 andQaq = 4300
(Fig. 6). By employing the definition in (Tsilipakos and Kzie 2014) we can obtain the
effective mode volumeVes = 0.1 um®. Note that this value is 5 times smaller than that of
the disk resonator in (Tsilipakos and Kriezis 2014). As@ptéted, the Bragg resonator is
able to confine the optical mode in small volumes, due to @sdihg-wave nature. This
results in high values of, promising to reduce the power threshold. However, thénisite
quality factor, which appears squared in Eq. (6), is limitecb00, whereas the NLCGS-
based disk resonator in (Tsilipakos and Kriezis 2014) festa quality factor of 1750. This
has a detrimental effect on power threshold, which becomes more pronounced by the
fact that for standing-wave resonators itQs < Q; that appears in the power threshold
expression, in contrast with the traveling-wave case. Taacteristic power for the Bragg
resonator i$ = 1.34W, approximately 6 times higher compared to the disk.

The inability of the proposed structure to achieve highalityfactors can be attributed
to the lack of a beneficial compromise between radiation esidtive losses. In contrast to
radiation losses, which can be reduced by proper design §Hig)], the resistive ones con-
sist an inevitable bottleneck toward the realization ofhhigality factors. A closed-form
relation calculatingQyes for a lossy Fabry-Pérot resonator, i.e., a standing-wagerator
comprised of a uniform nanophotonic waveguide segmentdsripartially) reflecting mir-
rors, is derived in Appendix A. Using this relation to obtaimestimate of the quality factor
anticipated in our Bragg resonator implementation we fin@laesof 720, consistent with
the value foMb — 200 nm in Fig. 6 (b). Note, finally, that the high value@£q obtained
verifies that the number of periods selectiid= 16) is a sound choice. There is no need to
employ more periods, since it is resistive losses that lih@Q; value.

The last step in the design process is specifying the cayglapg between resonator
and waveguide. As already mentioned, the valug should satisfyrg = 0.3, in order to
obtain an ER exceeding 10 dB. By solving the eigenvalue prabior the coupled res-
onator, the loaded quality fact@y; is calculated as a function dfin the range 0.1-0.pm
[Fig. 7(a)]. Then, we can determir@; throughQ[l = Qi’l + Qg and, subsequentlyg.
The conditionrg = 0.3 is satisfied for a coupling gap of 210 nm. In Fig. 7(b) the t&iec
field distribution is plotted at they plane halfway inside the polymer layer. Notice the third-
order mode supported by the cavity. The mode decays to thalmaiing waveguide towards
both directions. As a result, a standing-wave pattern iméar along the interaction region.
In the arced waveguide segments no coupling with the respigapossible and a traveling
wave is observed.
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6 Perfor mance Assessment

Having designed the Bragg-grating resonator, we can agsgssrformance. In Fig. 8 we
plot the bistability curve for the optimum configuration; = 0.3 andd = —3.29 corre-
sponding to an operating wavelength of 1567 nm. This timelafgtipe output power against
P, instead of the transmission. Both axes are denormalizdtRyi= 1.34 W, specified in
Section 5. Bistable states (A and)Avith an ER of 117 dB appear at an input power of
Pa = 7.5 W. Switching between them can be accomplished throughg8irand C which
lie beyond and below the bistability regime, respectivéhyis is shown in Fig. 9, where basic
memory operation is demonstrated with set and reset pis®e. specifically, second-order
super-gaussian pulses with a FWHM o2 s are utilized to toggle the system state. The
first pulse toggles the system to the low-output statg j# following the route ABA on the
bistability curve. The application of a second pulse (whghctually a dip in input power)
returns the system to the high output state (A) through poirimportantly, in both tran-
sitions the cavity responds in approximately 2 ps, rendettie proposed structure suitable
for ultrafast memory/switching applications.
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Fig. 9 Temporal response of the proposed Bragg resonator. Thepfilse¢ toggles the system to the low
output state following the route ABAon the bistability curve. The second pulse returns the systethe
high-output state through the’@A route. In both cases, the response time is approximatgly. Points A,
A’, B and C are clearly marked in Fig. 8.

In Fig. 9 the dynamic response has been obtained by using(&ajsand (3b). More
specifically, using Egs. (1) and (5), Eq. (3a) transforms int

1 .\, (1 1\, . /[T.
T§P0|a|>a_(?i+r_e>a+1 T—eSn» (12)

whered’andsdenote slowly varying envelope functions. After calcuigéthrough Eq. (12),
Sut=58n+j/1/Te 4 i.e., Eqg. (3b), is used to obtain the output power.

“__; W— o+

7 Conclusion

To summarize, we have proposed a hybrid plasmonic Bragingreesonator for optical

bistability. The structure is compact and can be readilgriated with standard silicon-
photonic waveguides. It offers tight mode confinement withéffective mode volume of the
supported mode being onlyloum? ~ 0.15(A /np 3. Although mode volume is significantly
reduced compared to traveling-wave implementations ifedibs and Kriezis 2014), the
power threshold could not be improved due to resistive b#gsgdting the quality factor to

low values. More specifically, bistable operation with an &RL1.7 dB requires an input
power of 7.5 W.

It is thus expedient to examine alternative standing-wasomator implementations
for reducing the power threshold and matching, or even ahngethe performance of
traveling-wave resonators. To this end, photonic crystalémentations with 2D periodicity
can be a favorable approach. More specifically, point-defacities with minimal penetra-
tion of the field components in the surrounding crystal stmeccould provide significantly
reduced effective mode volumes and, thus, power thresholds

In addition, since resistive loss constitutes the ultiniatiting factor for achieving low
input power thresholds, it is worth examining alternativaveguiding configurations for
the implementation of bistable components, based on baetleling- and standing-wave
resonators. A promising candidate is long-range hybridgmiznic waveguides (Bian and
Gong 2014; Ma and Helmy 2014), which based on the principtesyfmmetric waveguiding
environment can exhibit very high propagation lengths.
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A Appendix

Suppose we have a standing-wave resonator formed by anyras®photonic waveguide segment bound
by (partially) reflective mirrors, i.e., a generalized BaBerot (FP) resonator. An implementation based on
the NLCGS waveguide is depicted in Fig. 10(a). Our goal iseve an expression for calculatir@es by
relying solely on the mode profile of the underlying waveguide., the solution of a 2D eigenvalue problem
instead of a 3D one. This is possible since the structureiferamalong the z-axis.

Based on the definition of the quality fact@es can be expressed as the ratio of the energy stored in the
resonator to the energy dissipated per optical cycle duartio(resistive) losses in the metal. Hence,

1 { d(we) } 2 1 2
- Re [E(XY,2)|" + ~ u[H(X,Y,2)|7| oV
Qres = o 20red _ ///V {4 doo 4 , (13)

Potmic ///V % Re{E(xY,2)J" (xY,2)} V

whereJ is the electric current density aiwldenotes the volume of the resonator. Any lossy materiats (in

cluding metals) can be modeled using a complex dielectmstamt and, thus, the electric current density can
be written as) = 0E(x,y,z) = apIm{e}E(x,Y,2). If we additionally assume that the materials can be treated
as non-dispersive, which is justified by the absence of riaht@sonances near the operation wavelength of
1.55um, Eq. (13) takes the form

Oree ///V [Re{e}[E(xY,2)|* + pu[H(x,y,2)[*] dV
res — E —
J[ mietEy 2P av
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Now, due to structure uniformity along the z-axis, the stagdvaveform|[E(x,y,z),H(X,y,z)] possesses a
cross-sectional field distribution identical to the modefite [e(x,y), h(x,y)] of the underlying waveguide. In
other words, we can writE(x,y,z) = e(x,y) f(z) andH(x,y,z) = h(x,y) f (z), wheref (z) is a scalar function
denoting the standing-wave pattern. Separating the zadigmee and simplifying we arrive at

oo ! /L [Rele}ietxy) 2+ uln(xy)?] ds

(15)
i .//snlm{s}‘e(xvYNZdS

where Sy, denotes the cross-section of metal regions. Note that thenador and denominator in Eq. (15)
represent stored and dissipated energéunit length.

We have, thus, derived a closed-form expression allowimgddculating the resistive quality factor of
a general waveguide-segment standing-wave resonatad basthe solution of the two-dimensional eigen-
value problem of the underlying waveguide. For the purpddesting the accuracy of the derived expres-
sion through an example, we consider the NLCGS-based resoinaFig. 10(a). TheQZ2 values calcu-
lated by Eq. (15) are compared with the quality factors exéd from the complex eigenfrequency of the
three-dimensional eigenvalue proble@?R), Fig. 10(b). Note that for the 3D problem we have considered
perfectly-reflecting (PEC) mirrors. In this case, the regondoes not suffer radiation losses dpgds coin-
cides withQ;. Obviously, the agreement is very good. Note that the twoagmhes are compared for a wide
range of widths (186- 380 nm) and two distinchp values (30 and 50 nm) to illustrate the validity of the
approach.

Although Eq. (15) holds for cross-sectionally uniform sizng-wave resonators, it is valuable for esti-
mating Qres in resonators with distributed reflectors as well. Cledtg estimate is more accurate in cases
of shallow grating corrugation or weak field penetrationthie tistributed reflectors. More specifically, in
cases of shallow gratings the entire resonator lengthu@iety gratings) can be perceived as the FP cavity,
since field penetration in the gratings is bound to be stréng to the small corrugation, the structure is
nearly uniform. On the other hand, in cases of weak penetratilthough the corrugation may be large, the
mode is located primarily in the central region, which isiolmgly uniform. Here it is only the central part of
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Fig. 10 (a) CGS-based standing-wave resonator consisting of aguale segment with dimensioh¥, L
between (partially) reflective mirrors. (b) Resistive dyalactor Qyes as a function of cavity widthV for hp
values of 30 and 50 nm. The 2D approach of Eq. (15) is compaithdtie quality factor extracted from the
complex eigenfrequency of a 3D eigenvalue problem. Theeciggeement between 2D and 3D calculations
verifies the validity of Eq. (15).

the resonator that is perceived as the FP cavity. In bottsctis®e mode resides in a nearly-uniform region,
meaning that an accurate estimate is anticipated.

As a final remark, the idea of a closed-form expression abjeeadict theQ factor of a standing-wave
resonator by solving an eigenvalue problem of the undeglyiveguide is actually familiar from transmis-
sion line theory (Pozar 2005). More specifically, the gyaléctor of a resonator formed by a closed- or
open-circuited (TEM) transmission line segment, is apjnated by /2a, wheref (a) is the propaga-
tion (attenuation) constant of the underlying waveguidésudated by solving the corresponding eigenvalue
problem. Consequently, Eq. (15) can be thought of as a geraian of the3/2a relation. The former ac-
counts for the complex nature of the hybrid nanophotonic espdhereas the latter holds only for TEM or
quasi-TEM waveguides (e.g., microstrips).
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