Rigorous Quality Factor Calculation in Contemporary Optical Resonant Systems

Thomas Christopoulos,1 Odysseas Tsilipakos,2 Georgios Sinatkas,1 and Emmanouil E. Kriezis1

1 School of Electrical and Computer Engineering, Aristotle University of Thessaloniki
2 Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas

www.photonics.ee.auth.gr
Motivation

- Resonant structures are ubiquitous in modern photonics integrated circuits
- Contemporary platforms (plasmonics) and materials (graphene) exhibit distinct characteristics
- Quality factor calculation is non-trivial

Objectives

- Collectively present the Q-factor calculation techniques using commercially available software implementing FEM (COMSOL Multiphysics, ANSYS HFSS, CST Microwave studio)
- Highlight the effect of material dispersion, ohmic loss and light leakage on the calculations
- Propose alternatives routes
Presentation outline

- **Computational methods for calculating the Quality Factor**
 1. Eigenvector
 2. Field distribution
 3. Eigenfrequency
 4. Spectral response

- **Application range of the methods via examples**
 - Silicon ring resonator at the NIR
 - Graphene tube resonator at the FIR
 - Polaritonic rod at the FIR
 - Plasmonic core-shell at the visible

- **Conclusions**
Computational methods for calculating the Quality Factor
Quality factor definition (1): the eigenmode and the field distribution methods

Quality Factor definition

\[Q = \omega_0 \frac{W}{P_{\text{loss}}} \]

- \(W \) Stored energy on resonance
- \(P_{\text{loss}} \) Power loss

\[P_{\text{loss}} = \{ P_{\text{res}}, P_{\text{rad}}, P_i, P_e, P_\ell \} \]

- Resistive
- Radiation
- External (coupling)
- Intrinsic
- Loaded

[D. M. Pozar, Microwave Engineering]
Quality factor definition (1): the *eigenmode* and the *field distribution* methods

Quality Factor definition

\[Q = \omega_0 \frac{W}{P_{\text{loss}}} \]

- \(W \): Stored energy **on resonance**
- \(P_{\text{loss}} \): Power loss

\[P_{\text{loss}} = \{ P_{\text{res}}, P_{\text{rad}}, P_i, P_e, P_{\ell} \} \]

- Resistive \(\quad \) Intrinsic
- Radiation \(\quad \) Loaded
- External (coupling) \(\quad \)

[D. M. Pozar, Microwave Engineering]

Energy and Losses calculation

\[W = \frac{1}{4} \int_V \varepsilon_0 \frac{\partial \{ \omega \varepsilon_r (\omega) \}}{\partial \omega} |\mathbf{E}|^2 \, d\mathbf{r} + \frac{1}{4} \int_V \mu_0 |\mathbf{H}|^2 \, d\mathbf{r} + \frac{1}{4} \int_V \frac{\partial \mathrm{Im} \{ \sigma (\omega) \}}{\partial \omega} |\mathbf{E}|^2 \, d\mathbf{r} \]

Material dispersion

\[P_{\text{res}} = \frac{1}{2} \int_V \Re \{ \mathbf{E} \cdot \mathbf{J}^* \} \, d\mathbf{r} = \frac{1}{2} \int_V \Re \{ \sigma \} |\mathbf{E}|^2 \, d\mathbf{r} + \frac{1}{2} \int_V \omega \varepsilon_0 \mathrm{Im} \{ \varepsilon_r \} |\mathbf{E}|^2 \, d\mathbf{r} \]

Ohmic loss

\[P_{\text{rad}} = \int_{\partial V} \Re \{ \mathbf{S}_c \} \cdot \hat{n} \, d\mathbf{r} = \frac{1}{2} \int_{\partial V} \Re \{ \mathbf{E} \times \mathbf{H}^* \} \cdot \hat{n} \, d\mathbf{r} \]

\[P_e = \int_{\text{wg}} \Re \{ \mathbf{S}_c \} \cdot \hat{n} \, d\mathbf{r} = \frac{1}{2} \int_{\text{wg}} \Re \{ \mathbf{E} \times \mathbf{H}^* \} \cdot \hat{n} \, d\mathbf{r} \]

\[\frac{1}{Q_{\ell}} = \frac{1}{Q_i} + \frac{1}{Q_e} = \frac{1}{Q_{\text{res}}} + \frac{1}{Q_{\text{rad}}} + \frac{1}{Q_e} \]
Quality factor definition (2): the eigenmode and the field distribution methods

1. The eigenmode method
 - Complex eigenvalue $\tilde{\omega} = \omega' + j\omega''$
 - Temporal decay $\propto \exp\{-\omega''t\}$
 - Spatial exponential divergence! $\propto \exp\{+r\omega''/c\}$

 ![Diagram showing the field distribution and radial distance](image)

 - W and P_{loss} diverge but W/P_{loss} is constant

 $P_{rad} + P_e = 2\omega''W - P_{res}$

 [L. D. Landau, Electrodynamics of continuous media]

Commercial FEM eigenvalue implementations do not incorporate dispersion

EIGENMODE METHOD FAILS IN HIGHLY DISPERSIVE SYSTEMS
Quality factor definition (2): the **eigenmode** and the **field distribution** methods

1. The **eigenmode** method
 - Complex eigenvalue $\tilde{\omega} = \omega' + j\omega''$
 - Temporal decay $\propto \exp\{-\omega''t\}$
 - Spatial exponential divergence! $\propto \exp\{+r\omega''/c\}$

 ![Diagram of eigenmode method](image1)

 Radial Distance

 $|E|$ for radial distance r

 W and P_{loss} diverge but W/P_{loss} is constant

 $P_{\text{rad}} + P_e = 2\omega''W - P_{\text{res}}$

 *(L. D. Landau, *Electrodynamics of continuous media*)

2. The **field distribution** method
 - Driven harmonic simulation @ $\omega_0 = \omega'$
 - Physically incorporates dispersion
 - Spatial and temporal mode decay

 ![Diagram of field distribution method](image2)

 Radial Distance

 $|E|$ for radial distance r

 W depends on the integration window

 W/P_{loss} diverges with radius

Commercial FEM eigenvalue implementations do not incorporate dispersion

EIGENMOMENT METHOD FAILS IN HIGHLY DISPERSIVE SYSTEMS

FIELD DISTRIBUTION METHOD REQUIRES CAREFUL CHOICE OF THE INTEGRATION WINDOW
Alternative approaches: the *eigenfrequency* and the *spectral response* method

3. The *eigenfrequency* method

- Complex eigenvalue $\tilde{\omega} = \omega' + j\omega''$

$$Q = \frac{\omega'}{2\omega''}$$

Commercial FEM eigenvalue implementations do not incorporate dispersion

EIGENFREQUENCY METHOD FAILS IN DISPERSIVE SYSTEMS
Alternative approaches: the *eigenfrequency* and the *spectral response* method

3. The *eigenfrequency* method
 - Complex eigenvalue $\tilde{\omega} = \omega' + j\omega''$

 $$Q = \frac{\omega'}{2\omega''}$$

Commercial FEM eigenvalue implementations do not incorporate dispersion

4. The *spectral response* method
 - Driven harmonic simulation @ frequencies around ω_0

 $$Q = \frac{\omega_0}{\Delta\omega}$$
Alternative approaches: the *eigenfrequency* and the *spectral response* method

3. The *eigenfrequency* method
 - Complex eigenvalue $\tilde{\omega} = \omega' + j\omega''$

 $$Q = \frac{\omega'}{2\omega''}$$

4. The *spectral response* method
 - Driven harmonic simulation @ frequencies around ω_0

 $$Q = \frac{\omega_0}{\Delta\omega}$$

Commercial FEM eigenvalue implementations do not incorporate dispersion

EIGENFREQUENCY METHOD FAILS IN DISPENSIVE SYSTEMS

SPECTRAL RESPONSE METHOD IS ALWAYS CORRECT
Application range of the methods via examples
Study examples

Silicon slab ring resonator @ Near Infrared spectrum // Intrinsic Q

- Weak dispersion
- Absence of ohmic loss
Silicon slab ring resonator @ Near Infrared spectrum // Intrinsic Q

Study examples

- Weak dispersion
- Absence of ohmic loss

\[Q_i = \frac{\sqrt{a}}{1 - a} \frac{(2\pi R)\pi n_g}{\lambda_m} \]

[Bogaerts, Laser Photonics Rev. 6, 47, 2012]
[Pendry, Science 312, 1780, 2006]
Silicon slab ring resonator @ Near Infrared spectrum // Intrinsic Q

- Weak dispersion
- Absence of ohmic loss

\[Q_i = \frac{\omega'}{2\omega''} \]

Study examples

\[\bar{\omega}/2\pi = 193.5 + j0.0085 \text{ THz} \]

Silicon slab ring resonator @ Near Infrared spectrum // Intrinsic Q

Study examples

- Weak dispersion
- Absence of ohmic loss

$$Q_i = \omega_0 \frac{W}{P_{rad}}$$
Silicon slab ring resonator @ Near Infrared spectrum // Intrinsic Q

- Weak dispersion
- Absence of ohmic loss

\[Q_i' = \omega_0 \frac{W}{P_{\text{rad}}} \]
Silicon slab ring resonator @ Near Infrared spectrum // Intrinsic Q

- Weak dispersion
- Absence of ohmic loss

$$Q'_i = \omega_0 \frac{W}{P_{rad}}$$
Silicon slab ring resonator @ Near Infrared spectrum // External and Loaded Q

- Weak dispersion
- Absence of ohmic loss
Silicon slab ring resonator @ Near Infrared spectrum // External and Loaded Q

- Weak dispersion
- Absence of ohmic loss

$\omega/2\pi = 193.5 + j0.0139$ THz

$Q_e = \frac{\omega}{2\omega''}$
Silicon slab ring resonator @ Near Infrared spectrum // External and Loaded Q

- Weak dispersion
- Absence of ohmic loss

\[Q_{\ell} = \omega_0 \frac{W}{P_{rad} + P_c} \]
Silicon slab ring resonator @ Near Infrared spectrum // External and Loaded Q

- Weak dispersion
- Absence of ohmic loss

$$Q_L = \frac{\omega_0}{\Delta\omega}$$
Silicon slab ring resonator @ Near Infrared spectrum // External and Loaded Q

- Weak dispersion
- Absence of ohmic loss

$$Q_e = \frac{\omega_0}{\Delta \omega}$$

$$T = \frac{4(\omega/\omega_0 - 1)^2 + (1/Q_i - 1/Q_e)^2}{4(\omega/\omega_0 - 1)^2 + (1/Q_i + 1/Q_e)^2}$$

[H. A. Haus, Waves and Fields in Optoelectronics]
Graphene tube resonator @ Far Infrared (THz) spectrum

- Strong dispersion
- Absence of radiation
Graphene tube resonator @ Far Infrared (THz) spectrum

- Strong dispersion
- Absence of radiation

Study examples

$$Q_i = \omega_0 \frac{W}{P_{res}}$$

$$W = \frac{1}{4} \int \varepsilon_0 \varepsilon \|\mathbf{E}\|^2 \, dr + \frac{1}{4} \int \mu_0 \|\mathbf{H}\|^2 \, dr$$
Graphene tube resonator @ Far Infrared (THz) spectrum

- Strong dispersion
- Absence of radiation

\[Q_i = \omega_0 \frac{W}{P_{\text{res}}} \]

\[W = \frac{1}{4} \int_V \varepsilon_0 \frac{\partial \varepsilon_r(\omega)}{\partial \omega} |E|^2 \, dr + \frac{1}{4} \int_V \mu_0 |H|^2 \, dr + \frac{1}{4} \int_V \frac{\partial \text{Im}\{\sigma(\omega)\}}{\partial \omega} |E|^2 \, dr \]

[Christopoulos, Phys. Rev. E 94, 062219, 2016]
Graphene tube resonator @ Far Infrared (THz) spectrum

- Strong dispersion
- Absence of radiation

\[
Q_i = \omega_0 \frac{W}{P_{\text{res}}}
\]

\[
W = \frac{1}{4} \int_V \varepsilon_0 \frac{\partial \{ \omega \varepsilon_r (\omega) \} }{\partial \omega} |E|^2 dr + \frac{1}{4} \int_V \mu_0 |H|^2 dr + \frac{1}{4} \int_V \frac{\partial \text{Im} \{ \sigma (\omega) \} }{\partial \omega} |E|^2 dr
\]

[Christopoulos, Phys. Rev. E 94, 062219, 2016]
Graphene tube resonator @ Far Infrared (THz) spectrum

- **Strong dispersion**
- **Absence of radiation**

\[Q_i = \omega_0 \frac{W}{P_{res}} \]

\[W = \frac{1}{4} \int_{V} \varepsilon_0 \frac{\partial\{\varepsilon_\ell(\omega)\}}{\partial\omega} |E|^2 \, dr + \frac{1}{4} \int_{V} \mu_0 |H|^2 \, dr + \frac{1}{4} \int_{V} \frac{\partial\text{Im}\{\sigma(\omega)\}}{\partial\omega} |E|^2 \, dr \]

[Christopoulos, Phys. Rev. E 94, 062219, 2016]
Dielectric rod resonator/metasurface @ Far Infrared (THz) spectrum

- Weak dispersion
- Radiation and ohmic loss
Dielectric rod resonator/metasurface @ Far Infrared (THz) spectrum

- Weak dispersion
- Radiation and ohmic loss

\[Q_i = \frac{\omega'}{2\omega''} \]

\[u \frac{J_m'(u)}{J_m(u)} = \frac{H_m^{(1)}(v)}{H_m^{(1)}(v)} \quad u = \tilde{k}_0 n_{\text{LiTaO}_3} R \]

\[v = \tilde{k}_0 R \]

[J. A. Stratton, *Electromagnetic Theory*]
Dielectric rod resonator/metasurface @ Far Infrared (THz) spectrum

- Weak dispersion
- Radiation and ohmic loss

Study examples
Dielectric rod resonator/metasurface @ Far Infrared (THz) spectrum

- Weak dispersion
- Radiation and ohmic loss

\[
C_{\text{abs}} = \frac{2(m+1)\lambda}{\pi} \frac{1}{4(\omega/\omega_0-1)^2 + (1/Q_{\text{res}} + 1/Q_{\text{rad}})^2}
\]

[Ruan, J. Phys. Chem. C 114, 013901, 2010]
Dielectric rod resonator/metasurface @ Far Infrared (THz) spectrum

- Weak dispersion
- Radiation and ohmic loss

\[C_{\text{abs}} = \frac{2(m+1)\lambda}{\pi} \frac{(1/Q_{\text{res}})(1/Q_{\text{rad}})}{4(\omega/\omega_0 - 1)^2 + (1/Q_{\text{res}} + 1/Q_{\text{rad}})^2} \]

[Ruan, J. Phys. Chem. C 114, 013901, 2010]

\[A = \sum_k 4(\omega_k/\omega_0 - 1)^2 + (1/Q_{\text{res},k} + 1/Q_{\text{rad},k})^2 \]

[H. A. Haus, Waves and Fields in Optoelectronics]

Plasmonic core-shell @ Visible spectrum

- Strong dispersion
- Radiation and ohmic loss

Study examples
Plasmonic core-shell @ Visible spectrum

- Strong dispersion
- Radiation and ohmic loss

Study examples
Plasmonic core-shell @ Visible spectrum

- Strong dispersion
- Radiation and ohmic loss

Study examples

- Field distribution including dispersion
- Spectral response

Intrinsic Quality Factor Q_i

- P_{rad}
- R_{max}
- R_{out}

Outer Radius R (nm)

- TM_{10}
- TM_{20}
- TM_{30}

Box A
Study examples

Plasmonic core-shell @ Visible spectrum

- Strong dispersion
- Radiation and ohmic loss

- Eigenfrequency
- Eigenmode neglecting dispersion
- Field distribution including dispersion
- Spectral response

Intrinsic Quality Factor Q_i

- Outer Radius R (nm)

- P_{rad}, P_{res}
- silica, metal, cladding
Plasmonic core-shell @ Visible spectrum

- Strong dispersion
- Radiation and ohmic loss

Study examples
Conclusion

Summary

- Presentation of the Q-factor calculation in contemporary photonic resonant structures
- Evaluation in four judiciously chosen structures
- In depth examination of their applicability range with commercially available software

Results

- Strong influence of dispersion on the correct calculation of Q
- Light leakage also hardens the calculation

[arXiv:1902.09415]
Thank you!

web: www.photonics.ee.auth.gr
e-mail: cthomasa@ece.auth.gr

This research was co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Program "Human Resources Development, Education and Lifelong Learning 2014-2020" in the context of the project "Nonlinear phenomena in graphene-comprising resonators" (MIS 5004717).