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Theoretical study of a passively mode-locked integrated laser
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We assess the theoretical performance of a mode-locked silicon-rich-nitride ring laser, which is partly
overlayed with a MoS2/WSe2 bilayer and partly with a graphene monolayer. Through an external vertical
optical pump at 740 nm, the transition-metal dichalcogenide (TMD) bilayer can be inverted and provide gain
at 1128 nm while the graphene monolayer acts as the fast broadband saturable absorber. We show that under
modest pumping conditions, we can reach a stable mode-locked regime that can deliver on-chip pulsed output
with milliwatt peak power and down to 400 fs in duration. The ring laser is studied by rigorously modeling
the TMD bilayer as a semiclassical three-level system and incorporating the resulting resonant polarization
to the nonlinear Schrödinger equation (NLSE). Within the NLSE formalism we are able to also incorporate
material and waveguide dispersion as well as the significant Kerr-type nonlinearity of the silicon-rich-nitride
waveguide. Furthermore, we discuss all the necessary physical and mathematical approximations needed to
numerically solve the propagation problem, based on an implementation of the split-step Fourier method
with the atomic polarization term. Our mathematical treatment is very general and can be adapted to any
two-dimensional-material-enhanced traveling wave source. Finally, this work shows the feasibility and potential
of TMD bilayers as well as graphene for the development of efficient integrated pulsed on-chip sources.
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I. INTRODUCTION

Two-dimensional (2D) materials are a major research topic
of the photonic literature, spanning both passive and active
applications, such as signal modulators, nonlinear elements,
saturable absorbers, photodetectors, and light sources [1–3].
Their success is owed to their excellent optical properties
(electrically controllable absorption, high nonlinear index,
and high carrier mobility and broadband response) and to their
compatibility with silicon-on-insulator and the more recent
silicon-rich-nitride (SRN) platforms [4–6].

On-chip light sources are highly desirable in both indus-
try and research. With silicon being an indirect band-gap
semiconductor, the conventional approach through hybrid in-
tegration with III-V semiconductors still poses technological
challenges due to the silicon lattice mismatch [7,8]. Alter-
natively, rare-earth-doped waveguides have been fabricated
[9–11], as well as SRN waveguides enclosed by polymers
with organic-dye molecules. The latter, though, suffer from
the photobleaching effect [12] which inhibits high repeti-
tion rates [13,14]. Graphene, black phosphorous, hexagonal
boron nitride, and transition-metal dichalcogenides (TMDs)
have all been considered as 2D alternatives [3,8]. Specifi-
cally, TMDs are direct band-gap semiconductors and have
been used in lasing demonstrations in the near-infrared (NIR)
and visible spectral regions [15,16]. More intriguing, yet,
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are TMD bilayer heterostructures which offer slower radia-
tive recombination rates and electrostatally tunable emission
wavelengths [17,18]. Therefore, TMD heterostructures are a
promising candidate for the realization of efficient integrated
laser sources in the NIR region [19–22].

In this article, we theoretically investigate an NIR mode-
locked integrated laser, with the fundamental building blocks
realized by 2D materials, i.e., the gain and the saturable
absorption (SA). The photonic source is a ring resonator
that consists of a wire SRN waveguide on a silicon oxide
substrate. SRN is chosen due to the expanded transparency
window and the absence of the two-photon absorption ef-
fect, and the wire waveguide archetype is chosen due to its
high light-matter interaction with the considered 2D materials.
Gain is introduced by a MoS2/WSe2 bilayer overlaying a
quadrant of the ring. The heterostructure is optically pumped
by an external vertical source at 740 nm and emits light
at 1128 nm. The fast and broadband saturable absorber is
implemented by a graphene monolayer occupying a length
of a few microns. This small loss-modulation is enough to
passively mode lock the laser. Due to the millimeter length of
the cavity, the ring resonator cannot be described as a point
with the coupled-mode theory [19,23]; instead, we need to
spatially propagate a time-varying field. Thus, we employ the
nonlinear Schrödinger equation (NLSE) coupled with a semi-
classical three-level system to describe the gain mechanism of
the bilayer. We rigorously show how the rate equations are
fitted into the NLSE, and we numerically demonstrate the
stable mode-locked operation for very modest pumping
conditions.
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FIG. 1. (a) Top-down view of the SRN ring resonator overlaid
with a MoSe2/WSe2 bilayer and a graphene monolayer (not to
scale). The arrow shows the slice of the cross section. (b) SRN wire
waveguide cross section with vertical external optical pump direction
(plane wave). (c) Parallel to the 2D material electric-field distribution
|E‖|2 of the TE-supported mode.

II. DESCRIPTION OF THE RING LASER

The ring laser is shown in Figs. 1(a) and 1(b). SRN and sil-
ica have a refractive index of nSRN = 2.0089 and nSiO2 = 1.45,
respectively, at λ0 = 1128 nm. The height and the width of the
waveguide are 150 nm, and 1.2 m, respectively. The graphene
linear surface conductivity is 60 µS [24]. The total linear sur-
face conductivity of MoS2/WSe2 is i369 µS, equal to the sum
of each layer’s surface conductivity, as if light successively
passes through each layer [25,26]. This conductivity only
accounts for the dielectric properties of the bilayer at 1128 nm.
The frequency dispersion of each material is included through
the respective Sellmeier relations. The laser is assumed to be
air-clad. Out-coupling is performed with a side-coupled bus
waveguide (80:20 coupler). Linear losses (including losses
from wall corrugations and radiative losses) are taken to be
1 dB/mm and are included heuristically as a perturbation to
the linear solution.

The geometric dimensions of the waveguide were designed
firstly to provide high interaction between the 2D materials
and the guided mode so that a significant portion of the field
is guided close to the top 2D layer, and secondly, to ensure sin-
gle (cross-sectional) mode operation. The two possible mode
polarizations that we could choose from are the TE (dominant
electric field component parallel to the 2D layer) and TM
(dominant electric field component normal to the 2D layer).
The interaction of the 2D materials considered here (graphene
monolayer and MoS2/WSe2 bilayer) with an electromagnetic
field is described through a surface current density or an
equivalent surface polarization, and only field components
which are tangent to the surface of the 2D material can interact
with it. Note, that the response of these 2D materials is con-
sidered to be isotropic for fields tangent to their surface. In our
design, the 2D materials lie on the x-z plane, which means that
the maximum interaction will be provided by fields strongly
polarized in any of these directions. The TE mode interacts
with the 2D materials through its x component. The TM mode
interacts through its z component, and in some cases, e.g.,
in a silicon platform, can provide a better overlap compared
to the TE mode [27]. The SRN waveguide, though, does not
have as strong a refractive index contrast as an Si waveguide,

and thus the z component of the TM mode provides a weaker
overlap than the x component of the TE mode. Consequently,
the waveguide is engineered to only support a single TE mode
for the wavelengths considered.

From a cross-sectional finite element method (FEM) modal
analysis, the TE mode has an neff = 1.4798 and the field
distribution can be seen in Fig. 1(c). The perimeter of the
ring is Lr = 4 mm, from which the TMD bilayer covers 1 mm
and the graphene section just 20 µm. The cold cavity axial
mode separation is calculated to be vg/Lr ≈ 41.22 GHz in the
vicinity of 1128 nm, with vg being the group velocity.

Finally, we would like to note that we have assumed that
2D materials lie directly on top of the photonic component
without any bonding. This has been shown to be experi-
mentally feasible in a number of demonstrations, such as
in Refs. [7,20,21,28]. Also, although our theoretical work
assumes the material to be in absolute contact with the
waveguide, thus maximizing light-matter interaction, slight
deviations of some nanometers (e.g., the 2D material is moved
10 nm away from the waveguide) will lead to very small
quantitative differences from the results presented.

III. METHODS: THEORETICAL MODELING
OF THE RING LASER

Optical pumping happens between the valence and conduc-
tion band of the WSe2 layer, which has a transition energy of
1.675 eV (or 740 nm). The photoexcited carriers either relax
back to the WSe2 valence band or, due to the type-II band
alignment of the heterostructure, to the conduction band of the
MoS2 layer. The former path has a total relaxation lifetime of a
few picosecond, whereas the latter has an ultrafast lifetime of
1–100 fs [29]. Due to the considerable difference in relaxation
times, the intralayer relaxation (radiative and nonradiative)
can be safely neglected. From the MoS2 conduction band,
carriers relax back into the WSe2 valence band (the transition
energy is 1.1 eV or 1128 nm) with a relaxation lifetime of 1 ns
[17]. From reported values, the spontaneous emission lifetime
is also close to 1 ns [15,20,30], so we ignore any nonradiative
relaxation and assume that the total energy decay rate equals
the radiative one. Consequently, the TMD heterostructure is
modeled as a three-level system, with level 0 being the WSe2

valence band, level 2 the WSe2 conduction band, and level 1
the MoS2 conduction band.

We consider the TE mode propagating in the ring laser,
whose slowly varying envelope A is centered around ω0. The
NLSE in the region of the TMD bilayer is [31]

∂A(z, T )

∂z
=

3∑
m=2

im+1

m!
βm

∂m

∂T m
A + iγ |A|2A + α

2
A

+ iω0

4
√

En
e−iβ0z

∫∫
S

e∗ · P(r, T )dS, (1)

where βm = dβm/dωm evaluated at ω0, β0 is the propagation
constant at ω0, γ is the total Kerr nonlinear parameter from
all materials excluding the bilayer, and α is the linear power
loss coefficient from all sources, again excluding the bilayer.
The integral in Eq. (1) is over the waveguide transverse cross
section S. The equation is written in the moving time-frame
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FIG. 2. (a) Blue curve: |e‖|2 distribution on the TMD layer, evaluated by the FEM mode solver. Red curve: Piecewise approximation of
|e‖|2, where each segment is calculated as the mean of the respective true field distribution. Inset: Cross-sectional |e‖|2 in the waveguide. The
position of the TMD bilayer is shown with a dashed black line. (b) Circulating power of the stable Gaussian-like pulse. The inset shows the
initial random noise seed. (c) Spectral power density of the circulating pulse. The red curve is a reference Lorentzian distribution normalized
to the maximum spectral density of the signal and with the same bandwidth as that of the signal transition (20 Trad/s).

T with velocity equal to the group velocity vg = dω/dβ. The
real quasimonochromatic electric field is given by

E (r, t ) = 1
2 [E(r, t )e−iω0t + c.c.], (2a)

E(r, t ) = A(z, t )
e(x, y, ω0)√

En
eiβ0z, (2b)

En = 1

2

∣∣∣
∫∫

S
e × h∗ · ẑ dS

∣∣∣. (2c)

Note that A contains all dispersion and nonlinear effects that
act on the unperturbed fields e and h at ω0. The unperturbed
mode profile is evaluated with the COMSOL MULTIPHYSICS

FEM mode solver. The dielectric effects of the bilayer are ac-
counted for through its purely imaginary surface conductivity
by modeling the layer as a surface-current density boundary
condition.

The term in the second line of Eq. (1) contains the effect
of the active medium on propagation, which is considered a
perturbation to the linear solution, i.e., does not significantly
change the mode field profiles and propagation constants. We
define the projection of the active medium polarization onto
the guided mode as

p(z, T ) = e−iβ0z
∫∫

S

e∗
√

En
· P(r, T ) dS. (3)

The real polarization field, similar to Eq. (2a), is given by

P (r, t ) = 1
2 [P(r, t )e−iω0t + c.c.], (4a)

P(r, t ) = PTMD(r, t )eiβ0zδ(r − rTMD), (4b)

where we have retained only polarization terms that are
in-phase with the guided mode. The surface polarization pro-
duced by a 2D material is zero outside the 2D layer, indicated
by the delta function δ(r − rTMD) (with units 1/m), where
rTMD is a position vector to any point on the TMD surface.
Thus, all surface integrals on the waveguide cross section are
simplified to line integrals: Eq. (3) becomes

p(z, T ) =
∫

TMD

e∗
√

En
· PTMD(r, T ) d	, (5)

where the integration is carried over the curve that results
from the intersection of the transverse cross section S and the
surface of the TMD [the dashed lines in Figs. 2(b) and 2(c)].

Modeling the TMD bilayer as a three-level system with a ho-
mogeneously broadened Lorentzian line shape and using the
Slowly Varying Envelope Approximation (SVEA) implied by
Eq. (4a), the rate equations for the resonant atomic transitions
are given by [32,33]

dN0

dt
= −Wp(N0 − N2) + 1

τ10
N1 + 1

2h̄
Im{E · P∗}, (6a)

dN1

dt
= − 1

τ10
N1 + 1

τ21
N2 − 1

2h̄
Im{E · P∗}, (6b)

dN2

dt
= Wp(N0 − N2) − 1

τ21
N2, (6c)

dP
dt

= − 1

T2
(1 − iδ)P + i

K̃�N10

2ω0
E, (7)

where Ni are the surface carrier densities (in m−2) of the
ith level, Wp is the stimulated probability of the 2-0 pump
transition, τ21 = 100 fs is the (nonradiative) energy relaxation
time between levels 2 and 1, τ10 = 1 ns is the total energy
relaxation lifetime for the 1-0 signal transition, T2 = 2/�ωα

is the polarization dephasing time for the signal transition,
�ωα = 20 Trad/s [34] is the full width at half maximum
(FWHM) bandwidth of the signal resonant atomic transition,
δ = (ω2

0 − ω2
α )/2ω0, ωα is the midband signal transition fre-

quency, K̃ is a tensor coupling constant, and finally, �N10 =
N1 − N0 is the population difference, without degeneracies, at
the signal transition.

A. Polarization equation of motion

An “isotropic” response of a 2D material, located in the x-z
plane, that does not interact with field components normal to
its surface leads to a coupling constant that is given by [32]

K̃ = ω0ε0γradλ
3
0

4π2nh
× 3

2

⎡
⎣1 0 0

0 0 0
0 0 1

⎤
⎦. (8)

In Eq. (8), λ0 is the signal wavelength in vacuum, nh is the
refractive index of the host material (i.e., extracted from the
nonresonant dielectric properties of the TMD bilayer), and
finally, γrad is the radiative energy decay rate. From the pub-
lished literature the exact value of the radiative decay rate is
not yet clear [15,16,30]. Here, we adopt the assumption that
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the nonradiative decay rate is much smaller than the radiative
one, which effectively means that the total energy decay rate
γtot = γrad + γnrad ≈ γrad and thus γrad ≈ 1/τ10.

With Eq. (8), we can substitute K̃E = KE‖ in Eq. (7),
where E‖ is the tangential to the 2D material electric field.
The now scalar K has absorbed the 3/2 factor and is given by

K = 3

2

ω0ε0γradλ
3
0

4π2nh
. (9)

We now take the dot product of Eq. (7) with e−iβ0ze∗/
√

En,
integrate over the entire cross section of the waveguide, and
use the definition of Eq. (5), which leads to

d p

dt
= − 1

T2
(1 − iδ)p + i

K

2ω0En

∫
TMD

�N10|e‖|2 d	 A. (10)

Equation (10) is exact, within the approximations and as-
sumptions made so far, but the integral on the right-hand side
complicates the solution. To this end, we make a piecewise
approximation of |e‖|2, where in each segment with length Lj

of the TMD layer (in the cross section) the field distribution
is assumed constant and equal to its mean value |e( j)

‖ |2 =
const = 1

L j

∫
L j

|e‖|2d	.
Figure 2(a) shows how the field profile in the ring laser

is approximated for the carrier-rate equations. Based on the
field approximation, instead of integrating on the whole cross
section to derive Eq. (10), we dot multiply with the electric
field mode and integrate Eq. (7) over the specific intervals Lj

so we get an equal number of equations

d p( j)

dt
= − 1

T2
(1 − iδ)p( j) + i

K|e( j)
‖ |2Lj

2ω0En
�N ( j)

10 A, (11)

where N ( j)
i (z, t ) = 1

L j

∫
L j

Ni(r, t ) d	. Naturally the total polar-

ization projection of Eq. (5) is � j p( j).

B. Carrier equations

Returning to the carrier-rate equations, Eq. (6) are inte-
grated over the various segments Lj and written as

dN ( j)
0

dt
= −Wp

(
N ( j)

0 − N ( j)
2

) + 1

τ10
N ( j)

1 + Im{Ap( j)∗}
2h̄L j

,

(12a)

dN ( j)
1

dt
= − 1

τ10
N ( j)

1 + 1

τ21
N ( j)

2 − Im{Ap( j)∗}
2h̄L j

, (12b)

dN ( j)
2

dt
= Wp

(
N ( j)

0 − N ( j)
2

) − 1

τ21
N ( j)

2 . (12c)

A simplification of Eq. (12) is to assume that carriers flow out
of level 2 much faster than they are pumped, 1/τ21 � Wp, and
that Eq. (12c) is at the steady state dN ( j)

2 /dt = 0, which leads
to N ( j)

2 /τ21 ≈ WpN ( j)
0 . By also using the carrier conservation

N ( j)
tot = N ( j)

0 + N ( j)
1 = Ntot (Ntot being the constant total carrier

density), we can reduce Eq. (12) to a single well-known dif-
ferential equation for the population difference:

d�N ( j)
10

dt
= �N ( j)

0 − �N ( j)
10

T1
+ 1

h̄L j
Im{Ap( j)∗}, (13)

where �N ( j)
0 = −Wp−1/τ10

Wp+1/τ10
Ntot and T1 = Wp + 1/τ10. The

population inversion threshold for the pump is simply
Wp,th = 1/τ10.

C. Graphene SA

Regarding the graphene section, SA is taken into account
by including an SA term in the NLSE:

∂A(z, T )

∂z
=

3∑
m=2

im+1

m!
βm

∂m

∂T m
A

+ iγ |A|2A + α

2
A + 1

2

αsat

1 + |A|2/A2
sat

A, (14)

where αsat = σgr

4
√

En

∫ |e|2d	 [31] is the saturable-power-loss
coefficient of graphene (the integration is carried over the
total graphene length in the cross section), calculated to be
approximately 0.1 dB/µm assuming that all of graphene’s
induced losses can be saturated. The saturation power A2

sat
is found to be about 10.1 mW, calculated according to the
procedure for relative long pulses prescribed in Ref. [31].
Note that Eq. (14) implies that the SA action is instantaneous,
an approximation which we employ since graphene dynamics
are much faster (in the picosecond regime) [31] compared to
the TMD gain dynamics [18,20,29]. Furthermore, Eq. (14)
only applies to the portion of the ring overlaid with graphene.
Furthermore, the nonlinear parameter γ must also take into
account the Kerr contribution from graphene which is found to
be −147 W−1 m−1 (self-defocusing), assuming a third-order
nonlinear conductivity of i1.14 × 10−21 Sm2/V2 [31]. The
Kerr contribution from SRN to the nonlinear parameter is
found to be 254 W−1 m−1 (self-focusing), assuming a non-
linear index n2 = 2.8 × 10−17 m2/W [35]. Thus, the total
nonlinear parameter for the waveguide section overlaid with
graphene is reduced to 107 W−1 m−1.

D. Numerical solution

The final system of equations that describe the propagation
of a quasimonochromatic single-mode field in a waveguide
with TMD bilayer consists of Eqs. (1), (11), and (13). For an
easier reference, all these equations are repeated below:

∂A(z, T )

∂z
=

3∑
m=2

im+1

m!
βm

∂m

∂T m
A + iγ |A|2A + α

2
A

+ iω0

4

∑
j

p j, (15a)

d p j

dt
= − 1

T2
(1 − iδ)p j + i

K|ej‖|2
2ω0En

�N ( j)
10 A, (15b)

d�N ( j)
10

dt
= �N ( j)

0 − �N ( j)
10

T1
+ 1

h̄
Im{Ap∗

j}, (15c)

and we also summarize in Table I the values of the physical
quantities used in our simulations.

The solution of the appropriate NLSE, Eq. (14) for the
graphene section or Eq. (15) for the TMD section, is carried
out with the widely adopted split-step Fourier (SSF) method.
With the SSF method, the field is propagated for a single
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TABLE I. Summary of the values of geometrical and physical
variables used in the simulations.

Signal/lasing wavelength λ0 1128 nm
Pump wavelength λp 740 nm
SRN refractive index nSRN 2.0089
Silica refractive index nSiO2 1.45
Waveguide height 150 nm
Waveguide width 1.2 µm
Ring perimeter 4 mm
Waveguide linear losses α 1 dB/mm
Graphene surface conductivity 60 µS
SA saturation power A2

sat 10.1 mW
MoS2/WSe2 surface conductivity i369 µS
SRN nonlinear index n2 i2.8 × 10−17 m2/W
Graphene coverage 20 µm
TMD coverage 1 mm
TE mode effective index neff 1.4798
Group velocity vg

a 1.6488 × 108 m/s
GVD dispersion β2

a 1.6162 × 10−24 s2/m
Third-order dispersion β3

a −4.0366 × 10−39 s3/m
γ in graphene region 107 W−1 m−1

γ outside graphene region 254 W−1 m−1

Relaxation lifetime τ21 100 fs
Relaxation lifetime τ10 1 ns
FWHM bandwidth �ωα 20 Trad/s

aCalculated in the absence of 2D materials.

round trip and then used as the input for the next round trip.
Thus, for the mth round trip

Am(0, T ) = Am−1(Lr, T ), (16)

with Lr being the perimeter of the ring laser.
The spatial propagation for a length �z (we keep the letter

z since it is common in the NLSE formalism, but in reality z
is the arc length) is carried out in three steps: first the linear
operator acts in the spectral domain, containing all disper-
sion effects. Then, if present, we take into account the active
medium:

A(z + �z, T ) = A(z, T ) + �z

⎛
⎝ iω0

4

∑
j

p j

⎞
⎠, (17)

where p j is evaluated by numerically solving (with a Runge-
Kutta method) the initial value problem of Eqs. (15b)
and (15c) and with initial carrier distributions given by
�N ( j)

m (z,−Tr/2) = �N ( j)
m−1(z, Tr/2). To have access to the lat-

ter initial condition, the carrier distributions of the previous
round trip at Tr/2 and at every z must be saved. Also, due
to the time and field dependence of the carrier distributions,
the width of the time window must be chosen to be exactly
equal to the round trip time Tr = Lr/vg. Finally, to complete
the �z propagation, the nonlinear operator containing the Kerr
effect is applied in the time domain. Note that depending on
the position on the ring circumference, the underlying NLSE
being solved is modified. For the graphene section, we use
Eq. (14) and thus take into account graphene SA and the Kerr
nonlinearity from SRN and graphene (adding the individual γ

parameters). For the TMD section, we use Eqs. (15), where
we take into account the TMD polarization and the SRN Kerr
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uct of the stable pulse formed after around 600 round trips versus the
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nonlinearity. For the section where neither graphene nor TMD
is present, the NLSE takes the form of Eq. (14) without the SA
term and assigning to γ the SRN Kerr contribution.

The most expensive, computationally, step is the solution
of the carrier and polarization equations. Note though, that in
the SSF carrier density advancement step, the electric field is
considered constant. Thus, in the absence of spatial derivatives
(diffusion), the equations’ sets of the various segments Li are
decoupled and can be solved in parallel. Due to the symmetry
of the electric field, see Fig. 2, we used two segments for the
piecewise approximation.

On a final note, if there are no significant changes over one
round trip, Eq. (15a) can be averaged over a round trip and
with the help of Eq. (16) transformed to the Lugiato-Lefever
equation [36].

IV. MODE-LOCKED OPERATION AND DISCUSSION

From the simulation results, in Fig. 2(b) we show the circu-
lating optical power in the ring laser, during the 600th round
trip, calculated for an 80:20 output coupler. Thus, the available
output power will be about 20% of the 27 mW shown, which
is more than adequate for a variety of applications. Figure 2(c)
shows the corresponding spectrum, centered at ω0. This pulse
was formed out of an initial noisy input that is added at the
start of each round trip (inset), which simulates the effect
of spontaneous emission in the given propagation direction.
The noise distribution is generated in the frequency domain
by randomizing the phase of the spectral components of a
Lorentzian distribution of the same bandwidth as that of the
TMD signal interlayer transition. The mean noise power was
chosen heuristically and is of the order of 0.1 µW. You can
also observe in the inset of Fig. 2(b) that the initial noisy seed
passes through a Gaussian window to avoid energy reaching
the edges of the temporal window.

In this specific example, with the pumping rate Wp =
1.125/τ10, we observe a stable Gaussian-like pulse being
formed with 27.3-mW peak power and a FWHM duration of
452 fs. Figure 3(a) shows the peak power, Fig. 3(b) shows the
3-dB bandwidth and the temporal width, and Fig. 3(c) shows
the time-bandwidth product versus the pumping parameter
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FIG. 4. 2D evolution diagrams of the circulating laser intensity
for various normalized pump rates Wpτ10. The corresponding pump
rate is noted in each diagram in white. The vertical axis corresponds
to the round-trip number while the horizontal axis corresponds to
the fast time T . The latter is the same as the moving time-frame
T of the NLSE, which is moving with the group velocity vg. Panel
(a) shows no pulse formations, while panels (b)–(e) correspond to the
formation and propagation of stable pulses. The random noise seed
that simulates spontaneous emission can be seen in all panels around
T = 0 and is explicitly denoted in panel (e) with the white dashed
rectangle. (f) The pulse shows significant changes from round trip to
round trip and thus cannot be characterized as stable. Note that the
label and units for the horizontal axis are common between all panels
and are given below them.

Wpτ10. The peak power can reach tens of milliwatts with
increased pumping. Also, the bandwidth quickly reaches the
THz range, while the temporal width ranges from about 1 ps to
hundreds of femtoseconds. In the leftmost gray area, we did
not locate any stable pulse formation. In the rightmost area
on the other hand, we did observe the formation of pulses
but they did not stabilize within the simulation round trips.
To corroborate our stability argument, we present in Fig. 4
the 2D evolution diagrams of the circulating laser intensity
for several normalized pump rates. The chosen pump rates
directly correspond to some of the points in Fig. 3. We observe
that at very low pump rates just above the threshold, Fig. 4(a),
no pulse can be formed. By slowly increasing the pump rate
[Figs. 4(b)–4(e)], pulses are formed from the injected noise
and remain stable through the random perturbations of the
continuously generated noisy seed. The latter, which is used
to simulate spontaneous emission, can been seen in all of
the panels around the T = 0 points. The time window corre-
sponds to one round trip. The time instance at which the pulse
is present varies depending on the pump rate, where stronger
pump rates reduce the speed of the shift. Further increase of
the pump rate, Fig. 4(f), leads to pulses that are not stable,
since they significantly change from round trip to round trip.

Going back to Fig. 3(c), we observe that for low pumping
the time-bandwidth product of the resulting pulses is closer to
a transform-limited sech2 pulse, while for higher pumping it
is closer to that of a transform-limited Gaussian pulse. Both of
these are known solutions for mode-locked lasers, but the for-
mer has specific requirements. The Group Velocity Dispersion

(GVD) and Third Order Dispersion (TOD) parameters at the
signal wavelength are calculated to be 1.62 × 10−24 s2/m and
−4.04 × 10−39 s3/m, respectively. The Kerr nonlinear param-
eters due to SRN and graphene are 255 and −147 W−1 m−1

[27,35], respectively. Thus, the total Kerr parameter is positive
in every region of the cavity. Since we also have normal GVD,
the Kerr contributions of SRN and graphene are incompatible
with the formation of a solitonlike pulse.

Finally, the stimulated probability at the pump wavelength
Wp is used to evaluate the power density needed from the
vertical pump Wp = 1

2h̄ T2p
Kp

2ωp
|Ep|2, where Kp is the coupling

constant of Eq. (9) at the pump wavelength, T2p ≈ 28.6 fs is
the polarization dephasing time of the pump transition [34],
and the intralayer spontaneous emission lifetime is 290 ps
[37]. The TMD refractive index at the pump frequency can
be calculated by the total surface conductivity at the pump
frequency which is reported as 386 − i574 µS, where the
real part accounts for the pump absorption. Using these val-
ues, the optical intensity for a cw plane-wave pump for a
given Wpτ10 = 1.1 is found to be Ip = |Ep|2/2Zp ≈ 0.174
MW/cm2, where Zp is the intrinsic impedance of the bilayer.
Note that this optical intensity corresponds to the electric
field inside the bilayer. To estimate an upper bound for the
power needed from the pump laser we use the power reflection
coefficient for a plane wave at normal incidence (found to be
0.52) and arrive to the very modest value of 0.36 MW/cm2.

V. CONCLUSIONS

We studied a mode-locked integrated laser based on 2D
materials. A graphene monolayer provided the fast saturable
absorber and a MoS2/WSe2 bilayer the gain mechanism.
We considered external pumping, in the form of vertical
plane-wave illumination. The ring laser consisted of an SRN
wire waveguide on a silicon oxide substrate. The simulations
included a rigorous gain model, able to capture the TMD
polarization dynamics, material and waveguide dispersion ef-
fects, and Kerr-type nonlinearities from the SRN waveguide
and graphene.

We showed that the integrated SRN ring laser based on
2D materials can access a stable mode-locked regime. The
photonic structure itself is within standard fabrication limits,
and any technological complexity arises from the placement
of the 2D materials. The available out-coupled pulses have a
peak power of some microwatts and a duration of hundreds
of femtoseconds, rendering them suitable for a wide range of
applications. Also, the external pump requirements were eval-
uated to be quite modest, with the required optical intensity
being about 0.36 MW/cm2. These simulation results were
reached from a noiselike initial seed, showing that the laser
operation can be self-starting.
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