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In emerging open photonic resonators that support
quasinormal eigenmodes, fundamental physical quan-
tities and methods have to be carefully redefined. Here,
we develop a perturbation theory framework for non-
linear material perturbations in leaky optical cavities.
The ambiguity in specifying the stored energy due to
the exponential growth of the quasinormal mode field
profile is lifted by implicitly specifying it via the accom-
panying resistive loss. The capabilities of the frame-
work are demonstrated by considering a third-order
nonlinear ring resonator and verified by comparing
against full-wave nonlinear finite element simulations.
The developed theory allows for efficiently modeling
nonlinear phenomena in contemporary photonic res-
onators with radiation and resistive loss. © 2020 Optical

Society of America
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Optical cavities and electromagnetic resonant systems in
general are ubiquitous in classical and quantum optics, find-
ing use in a broad range of filtering, switching/routing, sens-
ing, lasing, and nonlinear applications [1]. Photonic resonators
of emerging technologies are open and typically become con-
siderably leaky as physical dimensions are shrunk in order to
achieve miniaturization and small mode volumes to harness
the accompanying field enhancement and boost physical pro-
cesses such as emission and nonlinearity. In addition, plas-
monic materials such as noble metals and graphene further
lower the total quality factor due to the accompanying high re-
sistive loss. As a result, contemporary photonic/plasmonic cav-
ities support quasinormal modes (QNMs) with complex eigen-
frequencies whose eigenmode profiles feature a pronounced
exponential increase away from the resonator (Fig. 1). In
this context, fundamental physical and mathematical quanti-
ties, such as the mode volume and Purcell factor, have to be
carefully (re)defined [2–4]. In addition, the well-known and
practically-useful perturbation theory approach for efficiently
assessing the effect of (small) material and structural modifica-
tions should be revised, as has been shown in the literature for
linear systems [5–7].

However, the use of perturbation theory for nonlinear ma-
terial modifications in leaky optical cavities has not yet been
discussed and is of both fundamental and applied scientific in-
terest. In this Letter, we develop a perturbation theory frame-
work for nonlinear leaky resonators. The main obstacle we have
to address concerns the ambiguity in defining the stored en-
ergy in leaky cavities, due to the eigenmode field divergence
(Fig. 1). In classical perturbation theory of closed resonators,
the stored energy is uniquely defined and used as the normal-
ization parameter of the modes. We manage to lift this ambi-
guity by indirectly defining the stored energy via the definition
of the resistive quality factor, which entails integration strictly
in the resonator body and, thus, does not depend on the com-
putational domain size and the mode’s exponential divergence.
The capabilities and potential of the derived framework are ex-
emplified by considering a third-order nonlinear resonator and
rigorously verified by comparing against full-wave nonlinear
finite-element (FEM) simulations.

As has been discussed extensively in the literature, the clas-
sical, first order perturbation theory for resonant systems [8] is
valid as long as light leakage (radiation damping) remains low
[6]. Recently, a modification of the classical perturbation the-
ory using the unconjugated, rather than the conjugated, form of
the Lorentz reciprocity theorem has enabled dealing with leaky,
open cavities as well [6, 9, 10]. This alternative form indicates
that the complex resonance frequency ω̃ = ωr + jωi of a cav-
ity (exp{+jωt} time-harmonic convention) is modified under a
perturbation Ppert (inside a volume Vp enclosing the resonator)
by the complex quantity ∆ω̃, calculated through (see Supple-
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Fig. 1. Generic leaky resonator, demonstrating the exponen-
tial growth of the quasinormal mode field profile away from
the resonator. Using perfectly matched layers (PMLs) the
fields at the boundary of the computational domain can be
zeroed out. Due to the this exponential growth, the stored en-
ergy cannot be unambiguously defined by integrating the en-
ergy density, as customarily exercised.
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ment 1, section S1 for details)

∆ω̃

ω̃0
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∫∫∫

Vp

Ppert · E0 dV

∫∫∫

V
ε0

∂{ωεr(ω)}
∂ω

E0 · E0 dV −
∫∫∫

V
µ0H0 · H0 dV

= −

∫∫∫

Vp

Ppert · E0 dV

QQNM
. (1)

In Eq. (1), lossy nonmagnetic materials with arbitrary disper-
sion have been considered; the spectral derivative of the disper-
sive permittivity is calculated at ω = ω̃0 (notation omitted for
brevity). Extension to dispersive magnetic materials is trivial.
Spatial dependence of the quantities in Eq. (1) has been sup-
pressed for brevity. In studies so far, Ppert typically refers to lin-
ear material perturbation [6, 9] in a volume Vp (inside or in the
vicinity of the resonator), taking the form Ppert = ∆εE ≃ ∆εE0.
Shape deformations are also possible but require different treat-
ment [7]. The main advantage of the unconjugated formulation
is that the end result can be complex, in contrast with the conju-
gated form where E∗

0 and H∗
0 appear in the numerator and the

denominator, producing norms for the complex quantities and
leading to solely real frequency shifts. Physically, the unconju-
gated approach allows to model not only resonance frequency
shifts but also linewidth modifications, a capability that ulti-
mately originates from the validity of the unconjugated Lorentz
reciprocity theorem in lossy materials and radiation modes [11].
To reach Eq. (1) we have zeroed-out the boundary integral that
arises; although this step is straightforward in cavities with neg-
ligible radiation [12], for leaky cavities it requires specific treat-
ment. In this work, it is achieved by enclosing the computa-
tional space with perfectly matched layers (PMLs) and perform-
ing the integration inside the complex-valued PML stretched co-
ordinates as well, as also exercised in Ref. [3] (care should be
taken to accommodate the evanescent tails of the mode). Alter-
natively, the surface term that emerges should be appropriately
treated [9, 13]. The two approaches have been proven equiva-
lent [14].

The validity of Eq. (1) has been verified in the literature un-
der linear perturbations [6, 7, 9]. Nevertheless, perturbation the-
ory for leaky cavities should be also applicable to nonlinear per-
turbations. The key point when Eq. (1) is to be applied in non-
linear systems, is the ability to unambiguously define the stored
energy Wstor (this is not required for linear perturbation theory)
and cast Eq. (1) in the form

∆ω̃(Wstor) = −γ̃Wk
stor, (2)

where the power k is related to the nonlinear effect order/type
(k = 1 for the Kerr effect, k = 2 for carrier effects, etc). How-
ever, due to the exponential growth of the quasinormal mode
away from the resonator, the stored energy cannot be defined
by simply integrating the energy density, since the result will
depend on the integration domain size (Fig. 1). Here, we as-
sume third-order nonlinearity and self-phase modulation due
to the instantaneous Kerr effect; generalization to other nonlin-
earity types and phenomena should follow a similar approach.
The Kerr effect induces a change in the refractive index of a
material proportional to the illuminating light intensity (∝ n2 I)
[15], or, in terms of the electric field, a nonlinear polarization
of the form PNL = (1/3)ε2

0Re{εr}c0n2[2(E · E∗)E + (E · E)E∗],
with n2 (in m2/W) denoting the nonlinear index (isotropic non-
linearity has been assumed). For the Kerr effect, Ppert = PNL

is the perturbation term and for its introduction in Eq. (1),
we allow E ≃ E0 (first order perturbation theory). The cru-
cial step is the next one: to reach the form of Eq. (2), we
use the definition of the resistive quality factor Qres to indi-
rectly define the stored energy and multiply the right-hand
side of Eq. (1) by Wstor/Wstor = Wstor/(QresPres/ω0), where
Pres = −(1/2)

∫∫∫

Vcav
ω0ε0Im{εr}|E0|2dV. This action trans-

forms Eq. (1) in the form of Eq. (2), rendering the nonlinear pa-
rameter γ̃ independent of the stored energy in the cavity. In
addition, since Pres is specified by integrating strictly inside the
cavity volume Vcav, its calculation is unambiguous and inde-
pendent of the computational domain size. Note that the ap-
plication of the developed framework requires a non-vanishing
linear material loss. This is not a limiting factor whatsoever,
since all physical structures suffer from some, even small, ma-
terial loss or are attributed a non-vanishing phenomenological
loss due to e.g. surface roughness. Even in lossless systems,
a small level of material loss can always be appointed without
affecting the response.

Eventually, Eq. (1) is transformed to (see Supplement 1, sec-
tion S1 for a step-by-step extraction)

∆ω̃(Wstor) = −γ̃ucjWstor = −4

(

ω0

c0

)3

c0ω̃0κ̃ucjn
max
2 Wstor,

(3)
where the quantities marked with tilde are in general complex.
A complex γ̃ucj originating from a purely real n2 means that
radiation and ohmic lifetime (quality factor) modifications are
induced by refractive index changes, due to resonant mode re-
distributions. The nonlinear feedback parameter κ̃ucj introduced in
Eq. (3) constitutes a dimensionless, intensity-independent met-
ric of the mode/nonlinear material overlap and is defined as

κ̃ucj =

(

c0

ω0

)3

∫∫∫

Vp

n2Re{εr(ω0)}|E0|2(E0 · E0)dV

1

ε2
0

QQNM nmax
2

ω0

4QresPres
.

(4)
The expressions in Eq. (3) and Eq. (4) are the main result of this
paper, generalizing previous works based on the conjugated
form of the Lorentz reciprocity theorem to build a nonlinear
perturbation theory framework, in analogy with Refs. [8, 16, 17].
For comparison, the conventional equations are

∆ω(Wstor) = −γcjWstor = −4

(

ω0

c0

)3

c0ω0κcjn
max
2 Wstor, (5)

and

κcj =

(

c0

ω0

)3
1

3

∫∫∫

Vp

n2Re{εr(ω0)}[2|E0|4 + |E0 · E0|2]dV

16

ε2
0

W2
stornmax

2

,

(6)
where Wstor = (1/4)

∫∫∫

V ε0Re{∂(ωεr)/∂ω}|E0|2dV +

(1/4)
∫∫∫

V µ0|H0|2dV can be unambiguously specified in sys-
tems with very low leakage by integrating the energy density.
Note that ∆ω and κcj in Eq. (5) and Eq. (6) are strictly real,
describing only resonance frequency shifts and not linewidth
modifications. Importantly, if we were to apply Eq. (5) in
leaky systems, the result would depend on the computational
domain dimensions (see Fig. 4), as the stored energy term in the
denominator diverges with increasing integration domain and
κcj → 0. Note that here we can also use the indirect definition
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Fig. 2. (a) Nonlinear ring resonator considered in this work.
R = 0.79 µm and w = 200 nm throughout. (b-e) Field plots (Ez-
components) of resonance modes (of azimuthal order m) with
gradually increasing radiation damping, owing to the decrease
in Re{εr} that weakens field confinement. The permittivity
values are 12.093, 10.093, 8.093, 6.093 for the four cases respec-
tively and the imaginary part equals −0.0022 throughout.

of the stored energy with the resistive quality factor. This
solves the divergence problem; however, Eq. (5) and Eq. (6) fail
to predict an imaginary part for the frequency shift and, thus,
information for linewidth modifications cannot be attained (see
the respective figure in Supplement 1, section S4).

To support the above discussion, we examine a two-
dimensional ring resonator of radius R = 0.79 µm and width
w = 200 nm, as shown in Fig. 2(a). The relative permittivity
of the ring is varied from 12.093 (εr of silicon) to 6.093 in steps
of 2 RIU in order to access modes with higher radiation loss.
The surrounding medium is air (n = 1). An imaginary part en-
compassing ohmic and possibly other fabrication-related losses
equal to −0.0022 is assumed in all cases. In Fig. 2(b-e), we
plot the Ez-component of the four modes considered, revealing
the increasing radiation/bending loss as Re{εr} decreases. The
depicted results were produced with the eigenvalue solver of
COMSOL Multyphysics®. In all four cases considered, the res-
onance wavelength is around 1.52 µm and the respective radia-
tion quality factors are approximately 550 000, 27 000, 1 700, and
140 (see Supplement 1, section S5 for a detailed report). Mate-
rial dispersion is not considered but it could have been easily
introduced; in this case, extra care should be exercised for the
correct calculation of the quality factors [14, 18].

To confirm our claims, we plot in Fig. 3 the nonlinear feed-
back parameter κ with respect to the computational domain
size (a circular domain of diameter d, enclosed by PMLs) for
the four cases considered. We use both Eq. (4) and Eq. (6)
for the calculations to highlight the significance of the newly-
developed framework (integration order and the normalization
term power are reduced by one to fit the 2D geometry chosen).
For the first two resonances (m = 9 and m = 8) for which radia-
tion leakage is weak, the two formulations give identical results
for Re{κ} [Fig. 3(a)], regardless of the computational domain
size. However, it is evident that for the more leaky sixth and
seventh order modes, κcj unphysically depends on the compu-
tational domain size, while κ̃ucj remains constant, as required.
Importantly, the imaginary part Im{κ} can be calculated only
through Eq. (4) [Fig. 3(b)] and is also constant with the compu-
tational domain size. As anticipated, leakier resonances exhibit
a higher value of Im{κ}, becoming significant for the sixth or-
der mode (Qrad ≃ 140) as Im{κ̃ucj}/Re{κ̃ucj} = 0.035. Thus,

1

ucj [Eq. (4)]
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Fig. 3. Nonlinear feedback parameter calculations, κ̃ucj and
κcj, versus computational domain diameter d for the four reso-
nant modes in Fig. 2. (a) Real part (Re{κ}): as radiation damp-
ing increases, the conjugated formulation breaks down but
the unconjugated one remains unaffected. (b) Imaginary part
(Im{κ}): Linewidth modifications can only be predicted by the
unconjugated framework.

it is safe to assume that when Qrad falls under 10 000, calcu-
lations using the traditional conjugated framework becomes
questionable and break down completely when Qrad falls un-
der 1 000. Although these limits are vaguely defined and refer
to this system, the observation of κ dependence on d highlights
the necessity of resorting to the proposed unconjugated frame-
work and can pinpoint the corresponding limits when working
with highly leaky resonators such as compact integrated (rings,
disks, Bragg filters, photonic crystal slabs) or free-space res-
onant systems (nanoparticles/nanoantennas, diffraction grat-
ings, subwavelength metasurfaces).

For validating the proposed framework, we side-couple the
ring resonator to a straight bus waveguide [Fig. 4(a)]. We take
care to approximately fulfill the critical coupling condition for
each case by correctly choosing the coupling gap g. This is
not generally necessary for the demonstration but we choose it
since it stretches the system most by forcing it to pass through
an almost vanishing transmission point (see Fig. 4). Then, we
solve the nonlinear time-harmonic problem in CW conditions
using the nonlinear solver of COMSOL Myltiphysics® and com-
pare the results with those obtained using the proposed frame-
work and temporal coupled-mode theory (CMT) [17]. Specifi-
cally, we monitor the transmission of the ring resonator which,
in the CMT context, is calculated through (see Supplement 1,
section S2 for a detailed extraction)

pout

pin
=

(δ + pi)
2 + (1 − rQ + rγ̃ pi)

2

(δ + pi)2 + (1 + rQ + rγ̃ pi)2
, (7a)

pin − pout − pi = rγ̃ p2
i . (7b)

The above polynomial system can exhibit at most three real and
positive solutions, pointing to the phenomenon of optical bista-
bility [16, 17]. In Eq. (7), we have defined the normalized fre-
quency detuning δ = 2Qi(ω − ω0)/ω0 (ω is the operating fre-
quency of the feeding wave), the intrinsic over external quality
factor ratio rQ = Qi/Qe, and the complex nonlinear parame-
ter ratio rγ̃ = −Im{γ̃ucj}/Re{γ̃ucj}, quantifying the contribu-
tion of the imaginary part of γ̃. All power quantities in Eq. (7)
are normalized with respect to the characteristic power of the
system, P0 = ω2

0/2Q2
i Re{γ̃}; an incorrect estimation of Re{γ̃}

will result in a different normalization and thus erroneous re-
sults. Finally, pi is the power loss due to the initial intrinsic
losses (ohmic and radiation), before the possible modifications
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Fig. 4. Verification of the developed, unconjugated (ucj) framework against full-wave nonlinear FEM simulations and comparison
with the conventional conjugated (cj) framework . (a) Schematic of the ring structure and the integration domain used. (b-d) Trans-
mission versus input power using CMT and nonlinear FEM for Qrad ≃ 27 000, 1 700, and 140, respectively. Excellent agreement
is found when the proposed framework is applied, even for highly leaky systems where modifications of the linewidth with input
power are pronounced. The conjugated alternative fails and unphysically depends on the chosen domain size d.

induced by the nonlinearity. Note that when the conjugated
framework is applied, rγ̃ = 0.

In Fig. 4, we plot the comparison between the proposed non-
linear framework and the full-wave nonlinear FEM simulations.
A normalized detuning parameter equal to δ = −

√
3 is chosen

for all demonstrations. Having approximately fulfilled the crit-
ical coupling conditions means that rQ ≃ 1 and, therefore, as
the input power increases the transmission curve begins from a
high state (δ 6= 0), reaches a minimum which is equal to zero,
and then starts to rise again for higher input power levels. This
expected behaviour is well captured by the full-wave simula-
tions and perfectly reproduced by perturbation theory/CMT
when the unconjugated framework is utilized. Calculations us-
ing the conjugated form are also included [for various compu-
tational domain sizes, cf. Fig. 4(a)]. For the first two cases
[Figs. 4(b,c)] they show good agreement, but start revealing a
(weak) dependence on the choice of d, as anticipated [Fig. 4(c)].
This is because the rγ̃ parameter acquires small values equal
to −0.00060 and −0.0042, respectively, meaning that linewidth
modifications are not yet significant. The most interesting re-
sult is obtained for the most leaky case [Fig. 4(d)], for which
rγ̃ = −0.039. In this case, the linewidth changes are notable but
can still be captured by the proposed framework. As already
mentioned, the effect of linewidth modification is attributed to
the mode redistribution induced by the nonlinearity which in
turn affects ohmic and radiation losses in the resonator. The
proposed unconjugated approach is capable of correctly cap-
turing these modifications as the excellent agreement between
the blue solid line and the dot markers (nonlinear FEM) reveals.
On the contrary, the conjugated framework (green dashed lines)
fails to reproduce the full wave results exhibiting a strong un-
physical dependence on the selected integration domain. The
framework is expected to hold for even lower Q-factors, in the
order of ten or below. Similar conclusions are reached for linear
perturbations as well (see Supplement 1, section S3).

In conclusion, we have developed a perturbation theory
framework for studying nonlinear material modifications in
leaky optical cavities, by implicitly specifying the stored en-
ergy in the cavity via its impact on resistive losses in the res-
onator material. The theory is verified for the case study
of a third-order nonlinear ring resonator which undergoes
self-phase modulation resulting in frequency and linewidth
changes. Apart from integrated resonant structures, the theory
can be applied to free-space resonant systems, which are inher-

ently leaky. This work opens the way to applying nonlinear
perturbation theory to a broad range of nonlinearity types and
phenomena in the blooming field of leaky resonant systems.
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