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Graphene is one the most promising 2D materials for functional electromagnetic components. Harness-
ing graphene’s high third-order nonlinearity, a standing-wave resonant system is proposed that realizes
low-power and high-conversion-efficiency degenerate four-wave mixing in the THz regime. The pro-
posed system is analyzed in depth, utilizing a recently developed nonlinear framework based on per-
turbation theory and temporal coupled-mode theory, which allows for efficient design, accurate results,
and physical insight into the system performance. Following robust design guidelines derived from the
developed framework, a clear design path is highlighted, covering two possible realizations of the cou-
pling scheme using one or two waveguides as physical ports. The two systems are compared on the basis
of input power and conversion efficiency performance metrics, accurately extracted taking into account
all relevant nonlinear phenomena including the nonlinear resonance frequency shifts due to self- and
cross-phase modulation in graphene, owing to the Kerr effect. The reported values of 10% conversion
efficiency and sub-mW power requirements are highly promising for practical applications, highlighting
the potential of graphene-based structures in the far-infrared.

OCIS codes: Nonlinear optics, four-wave mixing (190.4380); Surface plasmons (240.6680); Resonators (230.5750)
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1. INTRODUCTION

Graphene nowadays is considered as one of the most promising
materials for the future of high-functionality photonics, owing
to its unique thermal, mechanical, electrical, and optical prop-
erties [1]. Especially in the largely unexplored far-infrared (FIR
or THz) frequency regime, graphene renewed the interest for
functional components, mostly because of its ability to support
tightly confined guided modes in the form of graphene surface
plasmons (GSPs) [2] and the capability of tuning its properties
either electrostatically or optically. Henceforth, GSPs became
the basis for the establishment of diverse passive photonic com-
ponents, such as waveguides [3, 4], resonators [5, 6], and filters
[7, 8]. Furthermore, based on the same concept of GSPs, the non-
linear properties of graphene in the FIR have also started to get
explored [9–11], leading to the proposition of nonlinear switch-
ing [12–15] and frequency generation/mixing elements [16–18],
most of which exploit an underlying photonic resonator. The
latter provide a field intensity build-up mechanism that en-
hances light-matter interaction, thus allowing the nonlinear ef-
fect to manifest at reduced power levels.

So far, a large body of literature has been published on
graphene plasmonics [19–22] exploring interesting functional-

ities [23–25]; however, advanced functionalities capitilizing for
example on the highly nonlinear response of graphene are still
at their first steps [26–28]. Towards this goal, here we focus
on degenerate four-wave mixing (DFWM) with graphene in the
THz regime and study in detail the requirements for obtaining
high conversion efficiency with standing-wave resonant struc-
tures. Such a systematic approach became feasible due to the re-
cent establishment of a strict and accurate mathematical frame-
work that is capable of handling the DFWM process in triply
resonant cavities comprising of arbitrary bulk and sheet-type
materials [29–31]. This tool, based on the combination of pertur-
bation theory [32] and temporal coupled-mode theory (CMT)
[33], transforms the complex spatiotemporal Maxwell’s equa-
tions to a much simpler system of coupled, time-dependent,
first-order differential equations, providing at the same time
physical insight for the resonant system description.

Applying this recently developed framework [29–31], this
work aims to provide an in depth comparison of different
practical realizations of the DFWM process in standing-wave
graphene resonators. Existing works on DFWM with graphene-
comprising resonant structures are focused on the NIR [34–37]
where graphene does not support surface plasmon polaritons.

http://dx.doi.org/10.1364/JOSAB.XXXXXX


Research Article Journal of the Optical Society of America B 2

In contrast, the context of this work is to examine the far less
explored FIR regime where graphene is highly nonlinear and
provides the means to tightly confine light through GSP modes.
The proposed cavities are designed with care, following a step-
by-step approach. We take care to adopt measured material
properties, account for all relevant linear and nonlinear phe-
nomena, and conform to fabrication limitations, in order to pro-
pose a structure that exhibits high performance metrics and at
the same time be as close as possible to a practical realization.

The rest of the paper is organised as follows: In Sec. 2, the
mathematical framework that is used throughout the paper is
briefly presented and is furthermore applied to extract upper
limits for the DWFM performance metrics in standing-wave
resonant schemes. Next, in Sec. 3 a physical implementation
of a directly-coupled graphene ribbon resonator is presented,
with its geometrical parameters being chosen through a design
process that provides additional physical insight. The overall
performance is thoroughly studied in Sec. 4, where the reliable
performance metrics of conversion efficiency and input power
requirements are extracted and an intuitive approach to negate
the detrimental effect of the Kerr-induced nonlinear frequency
shifts that would degrade DWFM efficiency is presented. Fi-
nally, Sec. 5 discusses issues regarding the realization of the
proposed resonant cavity on a substrate and Sec. 6 concludes
our work.

2. NONLINEAR THEORETICAL FRAMEWORK

A. Perturbation theory and coupled-mode theory for multi-
channel 2D resonant systems

The resonant elements examined in this work are analysed with
an accurate and strict nonlinear framework based on pertur-
bation theory and temporal coupled-mode theory [29, 30], re-
cently expanded to correctly model 2D materials [31]. Under its
context, the contribution of any perturbative nonlinearity can
be calculated through the general equations [38]
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where PNL and JNL are the perturbative nonlinear polarization
and current contributions, ε0εr is the (real) permittivity tensor,

and σ(1) = σ
(1)
Re + jσ

(1)
Im is the (complex) linear conductivity ten-

sor. Note that the conductivity derivative in the denominator
of Eq. (1) is necessary to account for the extra stored energy
term, associated with the induced current density [38]; in such
cases the equality of electric and magnetic energies on reso-
nance breaks down. The form of Eq. (1) is general and can de-
scribe both bulk and sheet nonlinear materials exhibiting any
type of nonlinearity, while the tensorial nature of the material

linear properties (εr and σ(1)) is maintained.
The above equation can be further developed when the non-

linear phenomenon and the underlying materials are specified.
In this work, degenerate four-wave mixing in graphene is ex-
amined, thus Eq. (1) can be cast in the much simpler form as
[29, 31]

∆ωDFWM,1 a1(t) = −2β1a∗1(t)a2(t)a3(t), (2a)

∆ωDFWM,2 a2(t) = −β2a2
1(t)a

∗
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∆ωDFWM,3 a3(t) = −β3a2
1(t)a

∗
2(t), (2c)

where the three different ∆ωk quantities are used to describe
each involved wave contribution. Furthermore, ak(t) denotes
the respective resonant mode amplitude and k ∈ {1, 2, 3} repre-
sents the (strong) pump, the (weak) signal, and the produced
idler wave, respectively. The nonlinear parameters βk (mea-
sured in W−1s−2) are defined for a 2D nonlinear material as
[31]
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with σmax
3,Im denoting the spatially maximum value of the σ3,Im

parameter, introduced to account for multiple surface materials
with different nonlinear properties. The βk parameters are in
general complex and are connected through β1 = β∗2 = β∗3 . As a
result, ∆ωDFWM,k quantities are also complex to simultaneously
model the generation of the new wave due to the nonlinear in-
teractions between the two initial waves, both of which concur-
rently lose power that is transferred to the generated wave. The
nonlinear parameters βk in turn depend on the surface nonlinear
DFWM feedback parameters
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three parameters that quantify the intensity of the nonlinear
process by measuring the modes overlap with the nonlinear ma-
terial. In this case, only graphene is employed, justifying the
reduction to surface integration on the numerators. In Eq. (4a),
the following scalar quantity is introduced

UDFWM = 2(E∗
1,‖ · E3,‖)(E

∗
1,‖ · E2,‖) + (E∗

1,‖ · E∗
1,‖)(E2,‖ · E3,‖),

(5)
with the notation E‖ representing the parallel to graphene sheet
electric field components; the spatial dependance has been sup-
pressed for brevity. Furthermore, in the denominator of Eq. (4)
one can identify the energies stored in each mode in the cavity,
defined as [38]
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Note that the tensorial nature of the underlying materials is
either dropped (electric permittivity) or taken into account
(graphene complex surface conductivity).

Apart from the DFWM process, the Kerr effect in graphene
also affects the resonance frequencies of the cavity. Given the
presence of three waves, both self-phase modulation (SPM) and
cross-phase modulation (XPM) appear, described through

∆ωSPM,k ak(t) = −γkk|ak(t)|2ak(t), (7a)

∆ωXPM,kℓ ak(t) = −2γkℓ|aℓ(t)|2ak(t), (7b)

with the nonlinear parameters γkℓ (also measured in W−1s−2)
defined as
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and the surface nonlinear SPM/XPM feedback parameters given by
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As evident, the parameters γkℓ are real, contrary to βk. The
scalar quantity appearing in Eq. (9) is given by

Ukℓ = |Ek,‖|2|Eℓ,‖|2 + |Ek,‖ · Eℓ,‖|2 + |Ek,‖ · E∗
ℓ,‖|2. (10)

The (complex) resonance frequency shifts of Eq. (2) and
Eq. (7) can be readily incorporated in the CMT equations [33].
Assuming a resonant system with three resonances, we can
write

dak

dt
=j

(

ωk − γkk|ak|2 − 2γkℓ|aℓ|2 − 2γkm|am|2
)

ak

− jβkΦk(a1, a2, a3)−
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)

ak + µksin,k, (11a)

str,k =ct,ksin,k + dt,kak, (11b)

sref,k =cr,ksin,k + dr,kak. (11c)

The resonance amplitudes ak are normalized so that |ak|2 ≡
Wres,k express the stored energy on the respective mode, while

the wave amplitudes sk are normalized so that |sk|2 ≡ Pk ex-
press the guided power in the access waveguides. Further-
more, τi and τe are the cavity photon lifetimes corresponding to
intrinsic (resistive and radiation) and external (coupling) loss,
respectively, with the corresponding quality factors given by
Q = ωτ/2. Additionally, to keep the equations general, the
quantities µk and dk are introduced, quantifying the coupling
from the feeding waveguide(s) to the resonator and vice versa,
while the coefficients ck model the direct path from the input
to the transmission/reflection waveguide. All three factors de-
pend on the type of the resonator (standing or traveling wave)
and the type of coupling (direct or side coupling) [39]. Finally,
the function Φk(a1, a2, a3) appearing in Eq. (11a) is
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The CMT equations (11) are usually normalized with respect
to the nonlinear phenomenon under study, both for rendering
them more easily solvable and to gain physical insight. Choos-
ing the DFWM and specifically the production of the idler
wave at ω3 as the reference phenomenon, the normalization
ũk = (τ3|β3|)1/2ãk and ψ̃k = s̃k/

√
P3 is introduced, with P3

being the characteristic power of the process, defined as

P3 =
A

τ2
3 |β3|

. (13)

A ∈ {1, 2}, referring to a system that incorporates two/one
physical ports, respectively, while in the above definitions
τ3 = τe,3 for standing-wave resonators and τ3 = τi,3 for
traveling-wave resonators. Note that mode amplitudes and
input/transmitted/reflected waves are expressed as ak(t) =
ãk(t) exp{jω

op
k t} and sk(t) = s̃k(t) exp{jω

op
k t}, with ω

op
k denot-

ing the operating frequency of the k-th wave that is in general

different from the respective resonance frequency of the cavity.
In the end, the following system of equations is reached:
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The parameters that appear in Eq. (14) are:

• the normalized time t′ = t/τ3,

• the normalized resonance frequencies detuning δk = (ω
op
k −

ωk)τk,

• the quality factor ratio rQ,k = τe,k/τi,k for standing-wave res-
onators (or rQ,k = τi,k/τe,k for traveling-wave resonators),

• the SPM intensity ratio rSPM,k = γkkτk/(|β3|τ3),

• the XPM intensity ratio rXPM,kℓ = 2γkℓτk/(|β3|τ3),

• the DFWM intensity ratio rDFWM,k = βkτk/(|β3|τ3),

• the normalized coupling parameters σk and ̺k, depending on
the resonator type and coupling scheme.

The normalized from of Eq. (14) are general, easily solvable, and
can apply to any resonant system. Next, we will employ the
above framework to evaluate the performance of generic non-
linear standing-wave resonant schemes.

B. Upper performance limits of ideal standing-wave systems

The performance assessment of the system under study begins
by examining the ideal case of a generic standing-wave res-
onator, directly coupled to either one or two physical waveg-
uides, as depicted in Fig. 1(a), (b). This specific type of res-
onator/coupling scheme is chosen, because it provides the
best possible performance based on the relevant literature
[29, 30, 40, 41], and is simultaneously suitable for implement-
ing with the GSP platform that is assessed in this work. With
the term ideal we refer to a system without ohmic and radia-
tion losses (rQ = 0), without self- and cross-phase modulation
(rSPM = rXPM = 0) and with the three consecutive resonance
frequencies being equidistant, i.e. by neglecting any material
or waveguide dispersion, allowing to set δk = 0. For the cho-
sen system, the normalized coupling parameters take the val-
ues σ = {1, 2}, ̺t = {1, 0}, and ̺r = {1, 1} for the double- and
single-waveguide configuration, respectively, while ct = 0 and
cr = −1 in both cases.

The above parameters are introduced in the CMT frame-
work [Eq. (14)] and the emerging results regarding the
conversion efficiency (CE) —the converted idler wave
power over the incoming pump and signal waves power,
CE = 10 log{pout,3/(pin,1 + pin,2)}— are depicted in Fig. 1(c)-
(d) for the two configurations, respectively. There is an ideal
point at which CE is maximized. Both its location and its exact
value differ between the two configurations, showing that
the single-waveguide is advantageous in both pump wave
power requirements as well as optimum CE level. Still, both



Research Article Journal of the Optical Society of America B 4

-2
0

-1
0-2

0
-1

5
-1

0

0

1

2

N
o
rm

al
iz

ed
 S

ig
n
al

(
)

p
P

in
,2

3

0 108642

Normalized Pump ( )p Pin,1 3

(c)

CE = 6 dBidl -

0 108642

Normalized Pump ( )p Pin,1 3

CE = 3 dBidl -

0 1 2
0

0.5

1

N
o
rm

al
iz

ed
 O

u
tp

u
t

pin,1 = 4.0 (e)

(d)

w1

w2

w3

pin,1 = 1.0 (f)

Normalized Signal ( )p Pin,2 3

0 1 2

-20

-3

C
o
n
v
ersio

n
 E

ffi
cien

cy
 (

)
d
B

sin,1

sin,2

str,1

str,2

str,3

sref,1

sref,2

sref,3

sin,1

sin,2

sref,1

sref,2

sref,3

(a) (b)

Normalized Signal ( )p Pin,2 3

- 01

-7
.5

-5

-7
.5

Fig. 1. Schematic of a generic directly coupled, standing-wave
resonator with (a) two and (b) one physical port(s). Ideal
conversion efficiency map on the pin,1-pin,2 space, (c) for the
double- and (d) for the single-waveguide configuration. The
superior performance of the latter is evident. (e)-(f) Normal-
ized power carried by all three outward waves of each con-
figuration as a function of the signal wave power. The pump
power level is held constant, as marked in Fig. 1(c)-(d) with a
vertical dashed line.

maxima appear when pin,2 → 0, revealing that the signal wave
is required only for the initiation of the process. We must note
here that the incoming power for the two configurations is
normalized with respect to a different characteristic power, as
evident from the definition in Eq. (13).

The performance is better illustrated after setting pin,1 con-
stant and studying the normalized output —the outward
power of each wave over the incoming power of both pump
and signal waves, pout,k/(pin,1 + pin,2)— with respect to pin,2.
Note that the term outward power refers to the sum of the re-
flected and transmitted waves power pout,k = pref,k + ptr,k; the
latter is nonzero only in the double-waveguide configuration.
Beginning from the single-waveguide configuration [Fig. 1(f)],
it is easily observed that half of the incoming pump wave
power is transferred to the idler wave with the other half re-
maining at ω1. The injection of the signal wave only worsens
the performance, allowing more power to accumulate at the
pump outward direction. For the double-waveguide configura-
tion [Fig. 1(e)], the overall weaker performance is attributed to
the fact that half the power created at each wave, and most im-
portantly the signal wave, leaks from the transmission waveg-
uide (right in the schematic).
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Fig. 2. Schematic of a standing-wave graphene ribbon res-
onator, directly coupled with (a) two and (b) one bus graphene
waveguide(s). (c)-(e) Electric field distribution of the dominant
tangential component (Ex) on graphene. Three consecutive
modes are depicted, assigned to the (strong) pump, the (weak)
signal and the produced idler wave, respectively.

3. GRAPHENE MICRO-RIBBON RESONATOR: PHYSI-
CAL STRUCTURE AND DESIGN

Following the previous discussion, we apply the developed
framework to analyze and design a three-dimensional realis-
tic resonant structure, suitable for practical applications, utiliz-
ing a graphene ribbon waveguide in the THz frequency regime
where tightly confined GSPs are supported [2]. Although the
final resonant structure is to be placed on a glass substrate
(Sec. 5), in Secs. 3 and 4 we make use of a simplified, free-
standing variant to present the design process. The two config-
urations under study are depicted in Fig. 2(a) and (b), following
the generic representation of Fig. 1. The resonant element is a fi-
nite length free-standing graphene ribbon waveguide segment,
allowing the formation of a standing-wave resonance pattern
due to the high reflectivity at the air-graphene interface, intro-
duced by the strong light confinement of the supported GSP
mode (the effective index is around 9.5); the supported reso-
nances are of Fabry-Pérot type. This is verified by the resonance
pattern of the dominant, tangential to graphene, electric field
component, depicted in Fig. 2(c)-(e) for three consecutive reso-
nances of the uncoupled resonator, revealing the quasi-TM na-
ture of the guided plasmons.

Regarding the specifics of the design, the graphene ribbon
width is chosen equal to w = 1 µm to ensure single-mode op-
eration around 5 THz (free-space wavelength around 60 µm,
guided mode wavelength around 6.3 µm), while the length
L of the resonator is considered as a design parameter to be
specified in what follows. The linear surface conductivity of
graphene is calculated from the Kubo formula [42, 43], assum-
ing an achievable Fermi level of µc = 0.3 eV and always taking
into account the fact that graphene is highly dispersive in the
FIR; the choice of the Fermi level renders the conductivity of
graphene independent of the exact temperature value, at least
under room temperature conditions and for moderate fluctua-
tions of few tens of degrees. Its nonlinear surface conductivity
is estimated equal to σ3 = j1.2 × 10−18 S(m/V)2 [44, 45] for fre-
quencies around 5 THz, corresponding to an equivalent n

eq
2 =

3 × 10−13 m2/W, greatly exceeding typical values of bulk non-
linear materials such as semiconductors, nonlinear polymers,
and chalcogenide glasses. It must be noted that σ3 ∝ 1/ω3 is
highly dispersive in the FIR but since the employed frequencies
are relatively close, we chose to ignore this effect as secondary.
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It is important to highlight here how graphene dispersion
affects the resonance frequencies spacing, which in an ideal
Fabry-Pérot cavity without dispersion are equidistant. To this
end, we conduct finite-element (FEM) simulations to calculate
the resonance frequencies of three consecutive modes of an
L = 18.1 µm length graphene ribbon segment. Material dis-
persion is included by correctly tuning graphene conductivity
with respect to the emerging resonance frequency through an
iterative procedure, while waveguide dispersion is introduced
naturally through the full-wave numerical method (FEM). The
resonance frequencies are calculated as f3 = 4.36 THz, f1 =
5.00 THz, and f2 = 5.59 THz, resulting in unequal spacings:
∆ f3 = f1 − f3 = 0.64 THz and ∆ f2 = f2 − f1 = 0.59 THz.
This fact is important in terms of conversion efficiency since, as-
suming that we choose the initial frequencies to coincide with
two of the resonances (ω

op
1 = ω1 and ω

op
2 = ω2), then ideally

we would like the idler frequency (ω
op
3 = 2ω

op
1 − ω

op
2 ) to also

fall on a the resonance frequency ω3 so that the resonant en-
hancement of the nonlinear phenomenon is maximized. Only
equidistant resonances fulfil this requirement meaning that in
dispersive systems ω

op
3 6= ω3, limiting the device performance

[30, 46]. In CMT terms this fact is reflected in the δ3 detuning pa-
rameter which is nonzero. Note that even when a material with
weak inherent dispersion is employed, still waveguide disper-
sion due to the mode profile changing with frequency induces
such detunings. What is more, as found from our simulations,
waveguide and material dispersion are of opposite signs, shift-
ing the resonance frequencies towards different directions, thus
partly compensating each other. In this specific case, material
dispersion dominates over waveguide dispersion, being twice
as strong.

The optimum length of the resonator regarding DFWM effi-
ciency can elegantly emerge following a design process which
additionally enables a better physical understanding of the res-
onant system. Initially, we seek to minimize the characteristic
power P3 which is inversely proportional to the |κDFWM

3,s |Q2
e,3

product. Therefore, in order to maximize the aforementioned
product, we individually examine each involved quantity with
respect to the resonator length L. The norm of the nonlinear
feedback parameter κDFWM

3,s , depicted in Fig. 3(a), decreases
with the mode order of the idler wave m3 because modes of
higher order are accompanied by higher effective mode vol-
umes. This results in lower power densities (for a given in-
put power level) and thus weaker electric field amplitudes on
graphene. On the contrary, the intrinsic quality factor Qi,3, de-
picted in Fig. 3(b), increases with L since radiation loss is sup-
pressed in longer resonators, until reaching an upper limit set
by resistive loss. Interestingly, this increase is not monotonous
since even- and odd-order modes radiate differently as the inset
of Fig. 3(b) further supports, owing to the phase difference (0 or
π rad) between the light in the two opposite physical bound-
aries of the resonator. However, it is the external and not the
intrinsic quality factor that is involved in the calculation of P3,
with its value depending exclusively on the coupling gap g be-
tween the resonator and the bus waveguide(s). High Qe,3 val-
ues are on one hand desirable because they lead to lower P3. On
the other hand though, they worsen the conversion efficiency
due to the higher rQ,3 factors introduced [31]. As a compro-
mise, we choose rQ,3 = 0.2 and consequently depict the result-
ing Qe,3 values on Fig. 3(b) as well. Because the quality factors
smoothly change with L, the values of P3 [Fig. 3(c)] monoton-
ically increase; in this sense, shorter resonators are preferable.
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Fig. 3. (a) Nonlinear DFWM feedback parameter |κDFWM
3,s | ver-

sus mode order of the idler wave m3. (b) Intrinsic Qi,3 and
external Qe,3 quality factors versus m3. Inset: radiation qual-
ity factor Qrad,3 versus m3. (c) System characteristic power

P3 versus m3 at rQ,3 = 0.2. The opposite trends in |κDFWM
3,s |

and Qe,3 do not result in a local minimum on P3 because of the
small slope of the Qe,3 curve. All quantities are discrete; the
solid/dashed lines are used as a guide to the eye.

Nevertheless, in all cases considered the power requirements
are in the sub-mW regime. Finally, it must be noted that the
characteristic power of the double-waveguide configuration is
half that of the single-waveguide system, exclusively owing to
its definition [parameter A in Eq. (13)]. Still, because P3 is only
a quantitative measure of the necessary input power for a non-
linear phenomenon to develop, this twofold difference is not
necessarily important at this point.

Next, the induced frequency mismatch between the reso-
nance and the produced idler wave from the operating frequen-
cies is examined in Fig. 4(a). The parameter δ3 (positive in this
case) which quantifies the aforementioned effect decreases with
L for both configurations. This behaviour is expected since
the resonator free-spectral rance (FSR) —estimated through
FSR = c0/2neff(ω)L, with neff(ω) representing the effective in-
dex of the supported GSP mode— is inversely proportional to
L. Thus, the three resonances associated with the pump, sig-
nal, and idler waves are approaching each other, limiting the
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conversion efficiency (including SPM/XPM) versus m3. Maxi-
mum CE monotonically raises with m3, attributed to the lower
δ3 values which suppress the impact of dispersion. All quanti-
ties are discrete; the solid/dashed lines are used as a guide to
the eye.

effect of material and waveguide dispersion. Note here that the
parameter δ3 is calculated using the coupled resonance frequen-
cies of the respective configuration in order to take into account
the coupling-induced frequency shift (CIFS) [47]. CIFS in the
double-waveguide configurations is slightly stronger for lower
order modes because of the employment of two waveguides
that both slightly disturb the field distribution in the vicinity of
the coupling regions. In higher order modes, this effect is not
as pronounced.

The fact that longer resonators are associated with lower δ3

detunings is expected to enhance the maximum conversion ef-
ficiency of the respective structure. This is indeed the case in
Fig. 4(b), which depicts the maximum achievable CE values
when SPM and XPM are taken into account. The results ver-
ify that maximum CE increases with L due to the smaller δ3

values. The large distance from the ideal upper limits specified
in Sec. 2 B [depicted with horizontal lines, reflecting the find-
ings of Fig. 1(c) and (d)] is due to the presence of SPM/XPM
[31]. Additionally, the single-waveguide configuration outper-
forms the double one by exactly 3 dB in any given case with
δ1 = δ2 = 0, as expected from the results of Fig. 1(c)-(f). The pre-
sented CE is calculated using the developed CMT framework,
fed with the respective linear and nonlinear parameters calcu-
lated by means of FEM eigenvalue simulations. Extra details
can be found in the next section. Finally, note that in the double-
waveguide system, the idler wave power is calculated using the
outward power (sum of both transmission and reflection pow-
ers).

Based on the results presented thus far, a preferable opera-
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operating resonator length is L = 24.3 µm. The superiority of
the single-waveguide configuration is evident.

tion point can be found by jointly considering the two opposite
trends on P3 and CE [cf. Fig. 3(c) and Fig. 4(b)] for either of
the two configurations. Towards that goal, we plot in Fig. 5 the
necessary input power to reach the maximum CE in each ex-
amined scenario. It is clear that both for the double- and the
single-waveguide configuration there exists a minimum in the
necessary input power of the pump wave at which maximum
CE is observed. Notably, this minimum is the same for both
configurations and specifically it is reached for an L = 24.3 µm
long resonator, supporting the m3 = 7 order mode which is
appointed to the produced idler wave. What is more, because
δ3, rQ, rSPM, and rXPM are all nonzero, the signal wave input
power to reach maximum CE should be nonzero as well. Nev-
ertheless, it is almost invariable with L and in any case lower
than that of the pump wave; thus we do not seek on minimiz-
ing it as well. We find that between the two configurations the
single-waveguide one is advantageous, requiring lower input
power and leading to higher conversion efficiency. In particular,
for the double-waveguide configuration we get Pin,1 = 240 µW
and Pin,2 = 132 µW with CEmax = −28.8 dB, while for the
superior, single-waveguide design the respective power quan-
tities are almost halved, Pin,1 = 127 µW and Pin,2 = 77 µW, and
at the same time CEmax = −25.8 dB is doubled.

Given the choice of rQ,3 = 0.2, we can finally calculate
the coupling gap between the resonator and the bus waveg-
uide(s). In the double-waveguide configuration, this leads
to g = 0.43 µm which, in turn, results in rQ,1 = 0.23 and
rQ,2 = 0.26, given that the coupling efficiency is different be-
tween different order modes. In the single-waveguide configu-
ration, the respective gap is found equal to g = 0.23 µm, leading
to rQ,1 = 0.22 and rQ,2 = 0.24. The smaller gap in the latter case
is a direct reflection of the fact that the same amount of power
must escape from a single waveguide rather than from the two
of the former case. Overall, the resonance frequencies, the qual-
ity factors and the nonlinear parameters for all three modes of
each configuration are compiled in tables 1 and 2. The reso-
nance frequencies are all calculated for the coupled system to
take CIFS into account. Additionally, the intrinsic quality fac-
tors are also calculated using the coupled system to correctly ex-
clude the radiation that is associated with the evanescent cou-
pling to the bus waveguide(s) [48]. The latter justifies the small
differences in the intrinsic Q-factor between the two configura-
tions (table 1).
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Table 1. Linear parameters calculated via the eigenvalue FEM
simulations and used in the CMT framework.

Double-waveguide configuration

m1 = 8 f c
1 = 4.9988 THz Qi,1 = 1 234 Qe,1 = 279

m2 = 9 f c
2 = 5.4466 THz Qi,2 = 1 338 Qe,2 = 343

m3 = 7 f c
3 = 4.5264 THz Qi,3 = 1 097 Qe,3 = 221

Single-waveguide configuration

m1 = 8 f c
1 = 4.9989 THz Qi,1 = 1 231 Qe,1 = 265

m2 = 9 f c
2 = 5.4467 THz Qi,2 = 1 334 Qe,2 = 314

m3 = 7 f c
3 = 4.5265 THz Qi,3 = 1 094 Qe,3 = 221

Table 2. Nonlinear parameters calculated via the eigenvalue
FEM simulations and used in the CMT framework.

Double-waveguide configuration

rSPM,k rXPM,kℓ rXPM,km rDFWM,k

k = 1 2.61 4.12 2.85 1.06 + j0.43

k = 2 3.21 3.60 2.95 1.19 − j0.49

k = 3 2.07 3.36 3.99 0.93 − j0.38

Single-waveguide configuration

rSPM,k rXPM,kℓ rXPM,km rDFWM,k

k = 1 2.49 3.93 2.71 1.01 + j0.41

k = 2 2.95 3.30 2.71 1.09 − j0.45

k = 3 2.07 3.36 3.99 0.93 − j0.38

4. PERFORMANCE EVALUATION UNDER SPM/XPM

Having determined the physical dimensions of the device un-
der study and the parameters that describe it, in this section
we move to a more exhaustive examination and evaluation of
the two configurations performance. The analysis begins by
setting δ1 = δ2 = 0 and examining the CE metric in the Pin,1-
Pin,2 space. As evident from Fig. 6, both configurations exhibit
a maximum CE point. Thus, it is indeed verified that the single-
waveguide configuration outperforms the double one, both in
terms of maximum conversion efficiency and in input power
requirements.

The maximum conversion efficiency remains relatively low,
being comparable with those of straight waveguide alternatives
[49–51], which are more fabrication friendly. Although resonant
structures can be advantageous in terms of performance due to
the light intensity build up they provide, so far this enhance-
ment effect has been suppressed by the nonlinear frequency
shifts induced by SPM and XPM. However, CE can be restored
in its original high levels by (partly) negating the SPM/XPM
contribution after appropriately pre-shifting the operating fre-
quencies so that when SPM/XPM manifest, the operating and
the shifted resonance frequencies will coincide [29, 52]. Al-
though the estimation of the pre-shift can be performed ana-
lytically [52], we choose to follow a more instructive path by
keeping the input powers in their optimum levels and perform-
ing a parametric analysis in the δ1-δ2 space. The results of the
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Fig. 6. Conversion efficiency metric in the Pin,1-Pin,2 space for
δ1 = δ2 = 0. (a) Double- and (b) single-waveguide configu-
ration. A maximum is observed in both cases with the latter
being optimal both in terms of CE and Pin.

parametric analysis are depicted in Fig. 7. As can be seen, at
least a 15 dB enhancement is achievable only by correctly choos-
ing the operating frequencies. More specifically, an optimum
CEopt = −14.2 dB is achieved in the double-waveguide config-
uration when δ1 = −3.5 and δ2 = −2.0, resulting in δ3 = −2.2.
On the other hand, even better performance is obtained for the
single-waveguide configuration, with CEopt = −8.5 dB when
δ1 = −4.4 and δ2 = −2.1, resulting in δ3 = −3.7. The final
+17.4 dB enhancement, achieved only by correctly choosing the
operating frequencies is rather impressive. In terms of physi-
cally understandable quantities, the operating frequencies are
chosen as f

op
1 = 4.9575 THz, f

op
2 = 5.4285 THz, and thus

f
op
3 = 4.4865 THz, slightly red-shifted from the coupled reso-

nance frequencies of table 1. The 5.5 dB missing to reach the
ideal CE limit cannot be recovered because of graphene losses
and dispersion (material and waveguide) that cannot be can-
celed out.

In the detuning parameters space, we have marked unstable
regions where the phenomenon of optical bistability (BI) estab-
lishes [14, 31], owing either to SPM or to XPM. These regions ex-
ist when at least one δ parameter is negative since SPM and/or
XPM in graphene red-shift the resonance frequencies. Never-
theless, the maximum CE point is not surpassed in any of the
two possible bistable states, as we have found from the simula-
tions conducted. To validate the bistable response, in Fig. 7(c)
we examine the temporal response of an operating point lying
inside a bistable region in the single-waveguide configuration,
marked with a red star in Fig. 7(b). The system is initially in a
low efficiency state, but after injecting an appropriate triangular
pulse in the pump wave, the second, high-CE state is reached.
The system is restored in its initial state after a second triangu-
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lar pulse with a different sign is injected; a clear indication of
classic bistable behaviour [53]. On the contrary, a point lying in
a stable area exhibits a clearly stable response; injecting triangu-
lar pulses with various amplitudes cannot trigger a transition to
a different output state [Fig. 7(d)]. Note that for both the exam-
ined cases, the input power of the signal wave is kept constant
at Pin,2 = 77 µW.

5. FINAL RESONANT SYSTEM ON GLASS SUBSTRATE

We now place the previously evaluated graphene ribbon on top
of a glass substrate with a typical refractive index of nsub ∼ 1.5.
Although the relaxation time of graphene and the Fermi level

Graphene Glass substrate

Pin,1 = 89 Wm

Pin,2 = 46 Wm

CE = 22.8 dBmax -

CE = 7.8 dBopt -

Pin,1 = 127 Wm

Pin,2 = 77 Wm

CE = 25.8 dBmax -

CE = 8.5 dBopt -

(a) (b)

Fig. 8. Device implementation alternatives and their final per-
formance: (a) The so far examined air-standing graphene rib-
bon. (b) Graphene ribbon on a glass substrate.

might vary considerably depending on the presence of the sub-
strate and the fabrication process (direct growth or transfer of
the graphene mono-layer) here we choose to retain the same
values throughout. The exact performance and reported val-
ues of conversion efficiency might vary according to the actual
fabricated structure; however, the design methodology and the
phenomena that need to be considered for specifying the opti-
mum operating point remain unchanged. The length of the rib-
bon is kept constant and the system is evaluated with respect
to the characteristic power and the emerging frequency detun-
ing of the idler wave. For the glass-substrate configuration, the
above quantities are calculated equal to P3 = 577 µW (single-
waveguide system definition) and δ3 = +1.41, respectively.
For comparison, the corresponding values of the air-suspended
graphene are P3 = 618 µW and δ3 = +2.41. The better perfor-
mance of the glass substrate configuration is attributed to the
higher effective index that the supported modes exhibit (13.3
versus 9.5), thus allowing the establishment of higher order
modes for the same resonator length (m ∝ neff), which are char-
acterized by higher quality factors and, despite the lower κ pa-
rameters, by slightly better metrics in terms of power require-
ments due to lower radiation loss. Although one might suggest
that comparing modes of different order is unfair, still examin-
ing the same order modes of the air-suspended ribbon (assum-
ing it has a longer length), results in worse performance metrics
regarding P3 because of the lower mode confinement (lower κ
values) and the fact that the quality factors are the same (radia-
tion is of equal intensity between the two scenarios).

The final performance metrics regarding the actual input
power requirements and the maximum conversion efficiencies
before and after SPM/XPM compensation are also gathered in
Fig. 8. Specifically, the glass substrate configuration exhibits a
compensated maximum conversion efficiency of CE = −7.8 dB,
achievable for input power requirements below 100 µW: Pin,1 =
89 µW and Pin,2 = 46 µW. Overall, the final performance met-
rics are considered as very high while the structural complexity
of the resonant element is maintained low so that its physical
realization remains realistic.

6. CONCLUSION

To recapitulate, in this work we have demonstrated efficient
degenerate four-wave mixing in directly coupled graphene
standing-wave resonators, suitable for practical applications in
the THz. Employing our efficient and accurate framework that
allows to analyze resonant structures supporting DFWM that
involve 2D photonic materials, we have highlighted the design
requirements and considerations of such devices for efficient,
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Table 3. Comparison of the current work with state-of-the-art devices for DFWM in the FIR and the NIR frequency regimes.

Platform System Method Idler Frequency CE Input Powers Pp + Ps Reference

Gr Resonator Theory 4.5 THz −7.8 dB (89 + 46) µW This work

Si Waveguide Theory 32 THz −20.8 dB (2000 + 1000) Wa [54]

PhC w/ Gr (edge waves) Waveguide Theory 12 THz < −20 dBb (5 + 0.0005) nW [28]

Patterned Gr Metasurface Theory 3.1 THz −8.2 dBc (30 + 30) kW/cm2 [55]

Gr on Si Waveguide Theory NIR −30 dB (500 + 0.25) mW [50]

Gr on Si Resonator Experiment NIR −38 dB (8 + 1) mW [35]

GO on SiO2 Resonator Experiment NIR −38 dB (160 + 160) mW [56]

MoS2 on Si Waveguide Experiment NIR −32.1 dB (1 + 0.1) mW [57]

aPeak pulse power, bLossy case, −3.2 dB for the lossless case, cExtracted from the manuscript reported values.

low-power operation. Such an approach was made available
through the perturbation theory/coupled-mode theory frame-
work, which provides extra physical insight owing to the math-
ematically straightforward modeling equations and also allows
for quick and meticulous calculations of the nonlinear process
metrics.

A methodical analysis and design procedure has been fol-
lowed, starting from the ideal scenario (absence of dispersion
and losses) of an abstract standing-wave resonator under two
different coupling configurations. The findings were subse-
quently used to guide the design steps of a more practical 3D
graphene ribbon resonator, which geometrical parameters have
been specified on the basis of optimizing the power require-
ments and conversion efficiency. Throughout the process, the
two coupling configurations are comparatively assessed; we
found that the single-waveguide variant is advantageous in
terms of all performance metrics. Importantly, the dramatic ef-
fect of SPM/XPM on the CE suppression is highlighted, while
an approach to partly negate their effect is presented, simply by
correctly detuning the operating frequencies with respect to the
resonance frequencies. This allows for approaching the ideal
values of conversion efficiency and harnessing the full potential
of resonant structures for nonlinear applications, inherited from
the intensity build-up they provide. The final performance of
CE = −7.8 dB with Pin = 135 µW highlights the potential of
graphene as a nonlinear material for THz applications, as the ac-
companying Table 3 also reveals, gathering the state-of-the-art
works on DFWM with resonant and waveguiding structures,
incorporating graphene or other 2D materials on contemporary
material platforms.
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Abstract: In this supplementary file, we describe the computational modeling of graphene in 

the NIR and its surface conductivity. We also include some extra characteristics of the 

graphene-ribbon waveguide and the respective graphene resonator. 

 

1. Modeling graphene 

The linear properties of graphene are modeled through its surface conductivity tensor, which 

has nonzero elements only for components tangential to graphene. Two distinctive mechanisms 

contribute in the surface conductivity, namely intraband and interband absorption. In doped 

graphene, the former is always present while the latter exist only when the interacting photons 

have enough energy. Commonly, this is not the case in the THz frequency band where the 

photon energy is a fraction of the eV and thus graphene unique properties solely emerge from 

the intraband interactions. The equation governing those interactions is [1,2] 

𝜎intra = −
𝑗𝑒2𝜇𝑐

𝜋ℏ2(𝜔 − 𝑗 𝜏intra⁄ )
[1 +

2𝑘𝐵𝑇

𝜇𝑐
ln(1 + exp{− 𝜇𝑐 𝑘𝐵𝑇⁄ })], (S1) 

where 𝑘𝐵  is the Boltzmann’s constant, ℏ is the reduced Plank’s constant, 𝑇 is the absolute 

temperature, 𝜏intra is the relaxation time of the excited electrons and 𝜇𝑐 is the Fermi level of 

graphene, encapsulating its doping conditions. For nonzero Fermi levels, the temperature 

dependence is insignificant in room-temperature conditions and the respective term (second 

term in the bracket) can be dropped. In our work, we chose a typical relaxation time of 𝜏intra =
40 ps and an achievable Fermi level of 𝜇𝑐 = 0.3 eV. Under these conditions, the linear surface 

conductivity of graphene is plotted in Fig. S1 between 4 and 6 THz. The strongly negative 

values of surface conductivity’s imaginary part indicate the possibility to support surface 

plasmon polaritons. 

Graphene has also a highly nonlinear response, which is of Kerr type. When only intraband 

interactions are involved, the nonlinear response can be estimated by the closed-form 

expression [3] 

𝜎3 = 𝑗
3𝑒4𝜐𝐹

2

32𝜔3ℏ2𝜇𝑐
, (S2) 

where 𝜐𝐹 ≈ 𝑐0/300 is the Fermi velocity in graphene. Note the inverse proportionality (with 

the third power) between the nonlinear surface conductivity and the frequency. Also note that 

Eq. (S2) allows the calculation of the only independent nonzero element of the 4th rank 

nonlinear surface conductivity tensor of graphene. The nonzero elements of the tensor are those 

allowing solely for tangential interactions and reduce to 8 for a graphene sheet oriented in 

parallel to any of the coordinate planes. 



 

Fig. S1. Graphene surface conductivity versus frequency (FIR). 

 

2. GSP waveguide characteristics 

Following the frequency-dependent model of graphene surface conductivity, one can calculate 

through full-wave simulations the dispersion diagrams of a free-standing graphene ribbon of 

width 𝑤 = 1 μm. Such a calculation is important in order to have an estimation of the mode 

confinement and the accompanied resistive losses of the mode. The results are shown in Fig. 

S2. Note that in the calculation, one must keep in mind that both material and waveguide 

dispersion are considered. Therefore, it is revealed that higher frequencies result in more 

confined modes with lower resistive losses. Nevertheless, single-mode operation with sufficient 

distance from the next supported mode is essential in resonant systems, where higher order 

modes can potentially be excited through the discontinuity in the coupling regions. Thus, 

relatively low frequencies are highly desirable and subsequently chosen in this work. 

In another perspective, we fix the frequency at 5 THz and examine the effective index with 

respect to the ribbon width 𝑤. The results of Fig. S3 reveal that larger ribbons exhibit lower 

resistive losses and lower mode confinement as well. With the former being desirable and the 

latter not, it is rational to choose the ribbon width at 𝑤 = 1 μm for this work, as a compromise 

between the two trends. 



 

Fig. S2. Effective refractive index of the guided surface plasmon mode on a free-standing 𝑤 =
1 μm graphene ribbon versus frequency (NIR). 

 

Fig. S3. Effective index of the guided surface plasmon mode on the graphene ribbon versus 

ribbon’s width 𝑤 at a fixed frequency, 𝑓 = 5 THz. 

 

 



3. Standing-wave resonator characteristics 

Finally, the resonator characteristics are examined with the respective results presented in Fig. 

S4. Specifically, we examine how the width of the ribbon affects the resonance frequencies and 

the respective intrinsic quality factors of the three consecutive modes used in the manuscript 

(calculated with 3D FEM simulations –see the points in the figure– with the consideration of 

graphene’s strongly dispersive nature). A smooth change in all tree resonance frequencies is 

observed (left panel of Fig. S3), reflecting the equally smooth change in Re{𝑛eff} (Fig. S2) and 

the inverse proportionality relation between the resonance frequencies and the real part of the 

effective index [Fabry-Pérot cavity resonance frequencies, 𝑓 = 𝑚𝑐0/2Re{𝑛eff}𝐿 ]. Finally, 

from the right panel of Fig. R3, presenting the intrinsic quality factors, it can be inferred that 

resistive loss dominates over radiation: Despite radiation loss raises due to the lower mode 

confinement, the intrinsic Q-factor reveals overall lower losses (thus exhibiting higher values), 

owing to the weaker resistive loss contribution as 𝑤 increases (cf. Fig. R2). Note that for the 

modes presented, the resonance order is retained (𝑚 = 8 for the pump wave, 𝑚 = 9 for the 

signal wave, and 𝑚 = 7 for the idler wave). 

 

Fig. S4. Left: Resonance frequency of the graphene-ribbon standing-wave resonator versus 

ribbon’s width 𝑤. Right: Intrinsic quality factor of the respective modes versus ribbon’s width 

𝑤. Pump corresponds to resonant mode of order 𝑚 = 8, signal to mode 𝑚 = 9, and idler to 

mode 𝑚 = 7. 
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