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We study saturable absorption in graphene-comprising nanophotonic waveguides taking into ac-
count the finite relaxation time as well as the carrier diffusion due to the non-uniform, tightly con-
fined spatial profile of the guided modes. We discuss various details of graphene SA and comment on
the necessary conditions that allow for directly comparing our model with available experimental.
The mathematical framework is based on the nonlinear Schrodinger equation which provides a strict
framework for our analysis and is developed for two optical channels. We explore the propagation of
CW, long and short pulsed signals in a silicon slot waveguide and show the importance of our model
in order to capture the ultra fast dynamics of graphene and the spatial distribution of guided modes.
Finally, we demonstrate how cross absorption modulation can be exploited in order to imprint data
from a high power optical channel to a low power channel.

I. INTRODUCTION

Graphene has been the most systematically studied 2D
material with applications expanding into many diverse
scientific fields [1]. Specifically in optics and photonics,
graphene’s linear electronic dispersion gives rise to many
unique optical properties [2], with the most prominent
being graphene’s universal (broadband) light absorption
[3]. Moreover, graphene’s conductivity can be controlled
through chemical doping and more importantly through
dynamic electrostatic gating [4-6]. The exploration of
these linear characteristics has led to the theoretical and
experimental design of novel graphene-based devices [7—
9]. Furthermore, it was also reported that graphene ex-
hibits very high (comparable to silicon and silica) Kerr-
like (third order) nonlinear properties [10, 11]. The ex-
act magnitude of the Kerr nonlinearity is still investi-
gated [12-14], mainly because early experimental works
focused on extracting an effective bulk nonlinear suscep-
tibility for graphene, by artificially treating graphene as a
thin uniform layer. More recent studies have shifted into
identifying graphene’s nonlinear surface conductivity as
the appropriate quantity to correclty capture the nonlin-
ear optical properties of 2D materials [15]. Nevertheless,
many works have been published exploiting graphene’s
third order nonlinear response in order to realize all op-
tical devices [16-21].

Besides the Kerr effect, graphene is also known to ex-
hibit low power and ultra fast saturable absorption (SA).
In fact, the power threshold is lower than that of the Kerr
effect and also much lower than in semiconductor-based
saturable absorbers, rendering graphene SA very attrac-
tive as an alternate nonlinear effect [22-24]. In early
publications graphene SA was exploited to experimen-
tally realise passively mode-locked fiber lasers for fem-
tosecond pulses [25, 26]. Initially graphene was placed
on the fiber ferrule but this technique provided weak
interaction. New approaches to increase light matter
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interaction include the use of multiple graphene sheets
[22], graphene sheets placed on top of micro-fibers [27],
fiber tapers emedded in graphene-polymer composite
[28], folding graphene sheets around the fiber [29] and D-
shaped fibers [30]. The 2D planar geometry of graphene,
which makes it compatible with established integration
techniques for SOI based photonic devices and the above
need for stronger nonlinear interaction has led to an in-
creasing interest of exploring graphene SA in photonic
waveguides [31-33], which could lead to on-chip mode-
locked lasers and novel compact all-optical components.
Last but not least, the two decisive experimental param-
eters regarding the SA effect, namely the saturation in-
tensity (light intensity at which absorption is halved) and
response time are still show appreciable variation with
reports differing by two or three orders of magnitude
[24, 26, 34-39]. This has sparked an intense ongoing re-
search into the ultra fast graphene SA dynamics and how
they are properly modeled for nanophotonic waveguides.

In this work we propose a strict framework, based
on the nonlinear Schrodinger equation (NLSE), for the
macroscopic modeling of light propagation in photonic
waveguides that have 2D materials with SA. This is
achieved through a strict NLSE procedure by including
the surface conductivity of the 2D material. The sur-
face conductivity is dependent on the photoexcited car-
rier concentration, which in turn is described by a sep-
arate rate equation. We take into account both a finite
carrier relaxation time and carrier diffusion in the 2D
material, which becomes important in high-confinement,
and shed light on the conditions that allow direct com-
parison of our model with experimental data. The the-
ory is eventually specialized for graphene and we dis-
cuss the graphene-specific details. The developed NLSE
also takes into account the scenario of a probe/signal
scenario at different frequencies which can be used to ex-
plore the cross absorption modulation between two such
signals. Finally, we apply our theory into two distinct
cases, CW and pulsed excitation. In the CW case we
compare our model with other other simpler models and
we extract and effective saturation intensity which takes
into account the waveguide confinement and carrier dif-



fusion. This greatly simplifies the propagation of long
pulses where SA can be thought to be instantaneous.
Next, we explore a short pulse excitation example where
we show the asymmetric effects of the ultra fast temporal
response of graphene SA. Furthermore, we also investi-
gate the interplay between SA, linear dispersion and the
Kerr effect, which results into a soliton-like behaviour.
Finally, we simulate the simultaneous propagation of two
different wavelengths and how SA can be used to imprint
a data stream from one channel to the other.

II. GRAPHENE SATURABLE ABSORPTION

In this section we establish a general macroscopic phys-
ical model for a 2D saturable absorber and then discuss
how this is applied specifically to a graphene sheet.

A. Saturable surface current

We consider a quasi-monochromatic electric field with
central frequency wqg that interacts with a 2D saturable
absorber. The notation used for the real electric field €
is

1 .
E(r,t) = 3 [E(r,t)e """ +c.c], (1)
where E(r, t) is the complex slowly varying field envelope.
The induced first order macroscopic current density en-
velope J at wy can be written in the time domain as

J =W (w)E, (2)

where 51 (wp) is the first order (linear or low power) con-
ductivity tensor, which is assumed to be constant around
wp. In general the current density consists of both surface
and bulk contributions, originating from 2D and bulk ma-
terials, respectively. Without loss of generality we can
ignore bulk current densities so that we are left with just
a surface current density

J =73,0,(r) = 7Y (wo)Ed,(x), (3)
where Jg is the surface current density, 6§1) is the sur-
face first order conductivity tensor and d4(r) is a surface
Dirac function which is non-zero only on the 2D mate-
rial. Note that 6§1) has to be anisotropic so that there
are no current components normal to the 2D surface. For
example, a layer of a 2D material aligned in the zz-plane

(1)

would have a conductivity 65’ given by

Ul,xzogl,xz
sM=10 0 0 |, (4)
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where 01 3y = 01,yo = 0 and 01,y = 014, = 0. In the
absence of strong magnetic fields, 01 3, = 01,.. = 01 and
01,52 = 01,22 = 0, thus we can simplify Eq. (3) as

J ZolEH55(I'), (5)

where the scalar o; is the only independent value of
6§1)(w0) and Ej is the electric field parallel to the 2D
material [40].

Saturable absorption is introduced as the saturation of
the o1 conductivity in Eq. (5). This conductivity is usu-
ally thought as linear, i.e. the current density of Eq. (5)
is a linear function of E||. Under the effects of SA though,
the relation between current density and electric field be-
comes non-linear since the conductivity now depends on
the light intensity, which is proportional to [Ej|?. Micro-
scopically, SA can be attributed to band filling: As the
conduction band is filled by photoexcited carriers due to
direct intraband transitions, the probability of further
transitions is lowered and absorption is gradually satu-
rated [41]. Thus, we assume that oy is dependent on the
surface carrier density N, and write oy as

Ul(Nc) = Ounsat T Osat (Nc)a (6)

where o6t and og,t are non-saturable and saturable sur-
face conductivity components, respectively. Combining
Eq. (5) and (6), the total current density is expressed as
the sum of two distinct surface current densities

J= (Jlin + Jsat) 65 (I'), (7)

with
Jiin = UnsatEH, (8&)
Joar = O—sat(Nc)EHu (8b)

where Jj;, is the linear surface current density and Jg,¢ is
the non-linear current due to SA. The carrier density is
also a function of time N, = N.(E,t) and Eq. (8b) would
formally have to be a convolution between the conduc-
tivity and electric field, since it is written in the time
domain. In order for Eq. (8b) to hold in its current
form, the carrier lifetime has to be much longer than
the timescale of current density generation. This means
that the applied field interacts very fast (instantly) with
the conductivity of the medium and generates the cur-
rent density/photoexcited carriers, but the carriers them-
selves decay at a much longer (finite) time-scale. In a
two level system configuration this is called the “rate-
equation regime” where a separate equation is used to
calculate the carrier density distribution [42]. In this
work, assuming the above conditions hold, we use the
following general relation for the carrier density

1
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where FRe{0gat (Ne)}Ejj|? is the absorbed power density
(W/m?) corresponding to the saturable conductivity of
the 2D material, 7 is the SA relaxation time and D the
diffusion coefficient. Carrier diffusion exclusively takes
place within the 2D material. Also, the Laplace opera-
tor is only applied in the transverse plane and not the



propagation direction, that is V2 = V7. This can be jus-
tified under the slow varying amplitude approximation
(SVEA): assuming that the carrier density distribution
follows that of the field, then under the SVEA condition
second derivatives in the propagation direction can be
neglected. Finally, note that Eq. (9) assumes that every
absorbed photon has energy approximately equal to hwg
and it excites a single carrier.

By using the absorbed power density as the source
term in Eq. (9) instead of the absorption coefficient and
light intensity we don’t make the assumption that sat-
uration is uniform across the material or that E| has
a uniform spatial distribution. Consequently, N, is cal-
culated for each point on the 2D saturable absorber and
thus can more accurately describe the SA phenomenon in
situations where the electric field is highly non-uniform,
which is especially true for nanophotonic waveguides.

B. Saturation of graphene conductivity

Graphene’s linear surface conductivity is commonly
attributed to interband and intraband electronic tran-
sitions which give rise to an interband and intraband
surface current[43], respectively. Saturation of the ab-
sorption in graphene is directly linked to the saturation
of these two currents and consequently the saturation of
the associated conductivities. Expressions for the inter-
bad ointer and intraband oipir conductivites can be found
in a number of published works[40]. Although both of
these types of conductivities exhibit saturation with in-
creasing field strength[39], intraband transitions at the
near infrared spectral region (NIR) saturate at a much
higher incident power density (GW/cm?) compared to
interband transitions (MW /cm?). Also, in the NIR ab-
sorption is dominated by interband transitions. As a re-
sult, for applications in the NIR we can safely assume
that the intraband conductivity is non-saturable and we
can attribute SA effects solely to interband transitions.
In terms of Eq. (6) this translates to

g1 (Nc) = Ointra + Uinter(Nc)- (10)

Furthermore, graphene’s surface conductivity is also a
function of the chemical potential (u.) at which graphene
is biased. A plot of the real and imaginary parts of the
conductivities o1, Tinter aNd Tingra at 1550 nm, a temper-
ature of 300 K and for low intensities (linear regime) can
be found in Fig. 1(a). For u, > fw/2 interband transi-
tions are prohibited by Pauli blocking and so we expect
that any SA effects in this region are caused by intraband
saturation and in the NIR region will be relevant only
at very high incident power densities that are beyond
practical interest. On the other hand, for p. < hw/2,
the interband conductivity is much larger than the intra-
band one and noticeable SA effects are expected, also at
much lower power densities. Thus, we will study the SA
of graphene for p. < fiw/2, which for the telecom wave-
length A\g = 1.55 pum translates to p. < 0.4 eV. Note
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FIG. 1. All plots correspond to a free space wavelength of
1550 nm and a temperature of 300 K.(a) Graphene linear
(at low incident power) conductivity o1 versus chemical po-
tential. Also shown separately are the intraband ointra and
interband ointer conductivities. Real and imaginary parts are
depicted with solid and dashed lines, respectively. (b) Ideal
absorption modulation of a graphene sheet under homoge-
neous illumination and for full saturation of ointer. Under
these conditions the modulation is given by the conductivity
ratio Re{cinter } /Re{01}. The gray-shaded corresponds to the
strong SA regime.

that for lower frequencies (e.g. the THz regime) inter-
band transitions occur only for very small values of p.
so that in general intraband transitions are the domi-
nant component. Thus, in the THz regime graphene has
to be accurately electrically biased or even self-biased
very close to 0 eV [44, 45] in order to exploit the satu-
ration of interband transitions. Additionally, the satu-
ration intensity of intraband transitions was reported in
[39] to be proportional to A=2 which means intraband
transitions in the THz could possibly also be used for
SA applications. As a result, the THz regime is also vi-
able for graphene SA applications but because in those
frequencies graphene can guide light by supporting sur-
face plasmons, this regime will not be discussed in this
work. According to the above, we plot in Fig. 1(b) the ex-
pected absorption modulation versus chemical potential
for a graphene sheet illuminated by a homogeneous field
(1550 nm) strong enough to fully saturate ointer. In this
idealized scenario we observe that for 0 eV < p. < 0.4 eV
the absorption modulation is between 100% and 90%.

Finally, graphene’s surface interband conductivity is in
general complex [see Fig. 1(a)] and according to Eq. (10)
we expect that both the real and imaginary part are
affected with increasing light intensity. The real part
is saturated (decreased), which is the SA effect, but
the imaginary part in graphene will actually increase
(in magnitude) as was shown in [46]. This is nonlin-
ear change in graphene’s effective refractive index can
possibly be important in applications sensitive to non-
linear phase change, such as resonators [47]. Moreover,



recent publications[21, 48] suggest that what was previ-
ously observed as the Kerr effect is actually the result of
the modification of the imaginary part of the conductiv-
ity due to SA. In this work we will primarily focus on
the saturation of absorption in straight waveguides and
we choose to include the nonlinear phase change through
the Kerr effect, which is better documented in the litera-
ture. Furthermore, we assume that graphene is pristine,
e.g. u. = 0 eV, so that gjpter is almost purely real. To
simplify notation, from this point on when referencing to
Ointer We will implicitly refer to Re{ointer }-

The dependence of the absorption on the carrier den-
sity is estimated in [25] as 1/(1 + N./Nst) and more
recently in [21, 33] as 1 — N./(2Nsat), where Nt is the
saturation density. We define Ng,: as the steady state
carrier density at which the conductivity drops to one
half of its unsaturated value. Both of these approaches
are phenomenological but provide a simple saturation
function. We choose to adopt the expression from [21]
which translates to

N.
inter Nc = Ointer | 1 — ’ 11
TN = our (1= 530} ()

where Ointer = Tinter(0) is thought to be the linear low-
intensity value of the interband surface conductivity. Ac-
cording to Eq. (11) we can now express Eq. (8b) as

N,
Jsa = Ointer 1- - E 3 12
t Tint ( 2Nsat) I ( )

which is the SA non-linear current from a 2D graphene
sheet. We can also rewrite Eq. (9) using Eq. (11) as

N,
aNc Re{ainter} (1 — 2Nsat) |E”|2 N

= - —% - DV?N,
ot 2710.10 T v ’
(13)

by using the Re{} notation here we underline the fact
that even if we took into account the change of the imag-
inary part of oiter with the carrier density, Eq. (9) would
still only depend on the real part.

It is useful to examine the case where we have continu-
ous wave (CW) and homogeneous illumination at satura-
tion conditions. By dropping the time derivative (steady
state) and the dispersion term (homogeneous field) in
Eq. (13), we can calculate the saturation carrier density
by substituting N, = Ngat

Re{ginter}ZOIsat ’

Nsat = 2h,w0 5

(14)

where Zy is the free space impedance and Iy =
|Ejj sat|®/(2Z0) is the saturation intensity. By using
Eq. (14) in Eq. (13) we can also find the CW steady
state carrier density of a homogeneous field

N, 2I/Iy
Nsat B 1'|_I/Isat7

(15)
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where we defined the intensity as I = [E[?/(2Zp). It is
now straightforward to show that substituting Eq. (15)
into Eq. (11) leads to the well known saturation expres-
sion
Ointer

= —\ 16

1+ T/ It (16)
From Eq. (16) it immediately follows that the non-linear
current density is

Ointer (I)

Ointer
T+ /L (an
which describes SA in a straightforward way without the
need for a rate equation in the case of homogeneous CW
fields.

Last but not least, we discuss the values of the parame-
ters Ngat, Isat and 7 for graphene at 1550 nm. As the last
two parameters are the ones that can be directly exper-
imentally measured we focus on them and we estimate
the value of Ny from Eq. (14). In published experi-
mental and theoretical results[24, 26, 34-39] the value of
Iyt ranges from 1 MW /cm? to 1 GW/cm?. Although
experimental conditions and the specific setup (for ex-
ample the type of substrate that graphene is deposited
on) will affect the measurement, it is very important to
note that I, is by definition a CW intensity and thus
measurements are accurate only for CW or long pulse
excitation so that a steady state can be approximated.
For the case of graphene, this translates into pulses in
the ps-ns regime. Furthermore, the applied probe field
must also be as homogeneous as possible. In structures
with high field confinement, such as waveguides or mi-
crofibers, the carrier spatial diffusion DV2N, becomes
important and can even be more significant than carrier
relaxation [38]. Thus, the most accurate method of es-
timating Ig,¢ would be a plane wave incident on a free
standing graphene sheet. Following these observations,
we adopt the value of Iy, = 1 MW /cm? which was re-
ported in [25, 38].

Continuing, the SA relaxation time 7 in Eq. (13) for
graphene represents an effective time which depends on
two distinct time scales in graphene: the first one is the
carrier-carrier intraband scattering (thermalization), re-
ported in the range of 70 fs-150 fs, and the second one is
the carrier-phonon intraband scattering or electron-hole
recombination (carrier cooling) in the range of 0.5 ps-
1.7 ps. These processes are explained in detail in [23]
and were experimentally estimated in [49, 50]. Note that
the value of the effective parameter 7 also depends on
the specific setup as the carrier lifetime can be altered
by a number of exterior factors. Reported estimated val-
ues of T range from ultrafast values coinciding with the
carrier thermalization process (50 fs-150 £s)[33, 39], some
average of the thermalization and carrier cooling pro-
cess (0.5 ps-1 ps) [21, 24, 51] or the carrier cooling itself
(1.67 ps) [25, 38]. In the present work we opt for choos-
ing 7 = 1.67 ps so that the estimated Ny, by Eq. (14)
is similar to that used in [33]. A complete table with all
the selected values can be found in Table I.

Jsat =



TABLE I. Values of SA parameters used.

Isat T Nsat D
1 MW /cm?[1.67 ps[1.5 x 10™ m~?[5500 cm?/s

Finally, we would like to note that the choice of I
or Tyat 18 not independent of each other, as can be seen
in Eq. (14) when keeping Ng,¢ constant, or by a more
rigorous calculation in [39]. Qualitatively, this can be
understood by the fact that if the photoexcited carrier
density depletes faster then more power is needed to sus-
tain the saturation effect.

III. NLSE FORMULATION

In this section we will derive the non-linear parameters
of the Non-linear Schrodinger Equation (NLSE) that de-
scribes the wave propagation in waveguides with 2D sat-
urable absorbers. For the sake of completeness we will
consider both third-order and SA non-linear phenomena.
The analysis will be specialised for the case of two fields
of the same waveguide mode but at distinct frequencies,
which is often how SA experiments are conducted. The
derivation of the NLSE is a well known procedure[52, 53]
so it will not be fully expanded here but we note the fun-
damental restriction that should be satisfied: The effect
of non-linearity on the waveguide modes is thought as a
small perturbation, that is mode profiles do not change
under non-linear effects and propagation constants are
only perturbed. This is almost always the case for Kerr
effects but it is not obvious for SA where the conduc-
tivity of a material can be fully saturated. Neverthe-
less, in this work we will focus on SA from graphene
in nano-photonic waveguides in the NIR spectral region.
These waveguide modes are predominately photonic in
nature, which means that light is guided by the under-
lying waveguide structure and not graphene. Thus, the
presence of the graphene layers will not alter the guided
mode’s profile in any appreciable manner[54]. For such
photonic waveguides we can safely assume that the NLSE
restrictions hold.

We start by considering the real electric field £ in
a waveguide, which consists of a sum of all quasi-
monochromatic fields with distinct center frequencies w,,,

1 )
E(r,t) = 3 ZEy(r,t)e_“"”t +ce. |, (18)

where E(r,t) the complex electric field envelope, r the
position vector, ¢ the time and

e, (T, y,wy) 50
E,(r,t) = A,(z,t) 222020 o2, (19)
VN,

where e, (z,y,w,) is the tranverse mode profile at w,,

Bé'/) = ") (w,) the mode propagation constant and

NV:;Re{//e,,xhﬁ-idS} (20)

a normalization constant so that |A,,|2 represents the
mode’s guided power. In Eq. (20) the integration is car-
ried out over the waveguide’s transverse cross-section S.
Note that A, contains the effect of both linear dispersion
and non-linear effects. In the frequency domain Eqs (18)
and (19) are

FT{E(r, 1)} = 5 [B(r,w) + B*(r,~w)],  (21a)

N | =

B(r.) = 30 Az — ) L) o= (o

VN, ’

where FT{-} is the Fourier transform and we have chosen
to distinguish frequency domain fields from time domain
ones using the tilde notation.

The Kerr effect is most commonly introduced in
Maxwell’s equations through a nonlinear polarization
term P3 for bulk materials and non-linear surface cur-
rent densities J3 for 2D materials [11]. If we also include
the SA effect from 2D materials by using Eq. (8) we can
write Maxwell’s equations in the frequency domain as

V x E = iwpoH (22a)

V x H = —iweo&, E + iy — iwP3 + 3355(7") + jsatés(r),
(22b)

where &, is the bulk relative dielectric permitivity tensor,
P3 the frequency domain envelope of the third order po-
larization and J3 the frequency domain envelope of the
third order surface current density. The linear current
density Jyi, encompasses all of the linear current densities
(bulk or 2D) present. The frequency domain envelopes
are the Fourier transform of the respective time domain
envelopes defined from the real fields as

1 i —iw
Ps(r,t) = 3 Z/ngy/ (r,t)e ™" +cec.|, (23a)
1 i —iw,r
JS(ra t) = 5 Z J3,l// (1‘7 t)e vt +c.c, (23b)
1 ,
sTSat (I‘, t) = 5 Z Jsat,u’ (I‘, t)eilw”/t + c.c. (23C)

where 1/ denotes all the possible frequency components
that can be created through frequency-mixing non-linear
processes.

Following the standard derivation of the NLSE and
using Eq. (22) for each distinct propagating frequency we
can write the frequency domain equations of the slowly



varying envelopes A, as

0

azA v(z,w —wy) —ZZ Lo wy) ﬂ(u v(2,w—wy)

zwe‘zﬁo z //

+ —ngl,(r, w — wy)ds(r)

(ryw—wy)

i~

+ —Jeat o (r,w — wy)és(r)} ds,

E

(24)

where 57(1") is the n-th derivative of the propagation con-
stant with respect to w, calculated at w,. The first term
in the right hand side stands for the linear dispersion
while the terms in brackets account for third order non-
linear effects and SA.

Equation (24) is now transformed back to the time
domain as

P SN N
@Au(zat)—nz_:l T Pn %A( t)

+ 4%6_“}&”2 // e, - P3,(r,t)dS

1 o
— Weilﬁé i /e; . J37l,(r, t)dg (25)

1 (v

— Weizﬁé )Z /e; . Jsat7y(r,t)d€
A,

2

where the surface integrals regarding surface currents
were transformed to line integrals, due to d(r), on the
respective 2D material. Furthermore, we have heuristi-
cally included the linear losses with a, = ZIm{nélf})}ko,
where ngfjf) is the linear effective refractive index of the
respective mode and kg the free space wavenumber. Note
that non-saturable losses induced by 2D materials are in-
cluded in this parameter.

The next step is to find the time domain expressions for
the non-linear terms. To somewhat simplify the analysis
we assume that there are only two fields propagating with
v = 1,2 corresponding to frequencies wy and ws, respec-
tively. Furthermore, the first field (pump) is assumed to
be much stronger than the second one (probe) so that all
non-linear effects are attributed mainly to the first field.
Also throughout this analysis the material response re-
garding P3 and J3 is taken to be instantaneous and we
ignore any frequency mixing effects to other harmonics.

A. Third order effects

The time domain expression for the third order terms
at wy are

3 *
P3,1 = 150)_((3) (wl;wlv 7w17w1)|E1E1E1
3 (26a)
+§50)_((3) (W1;(AJ2, 7w27w1)|E2E;E17
J3’1 = ZO—S (W1§W17 _Wlawl)|E1E1E1
(26b)

3 *
+§a§3)(w1; wa, —wa, w1 )| B2ESEy,

where the symbol — denotes tensor multiplication, and
the 4th rank tensors x® and > are the bulk third or-
der susceptibility and surface third order conductivity,
respectively. For isotropic nonlinear bulk and sheet ma-
terials the tensor elements are given by

(3
ijk:l

(3)
s,ijkl

1
3X3(5ij5kl + 0ikbji + 0adin), (27a)

1
o = gUB(5ij5kl + 5ik6jl + 5115Jk) (2712))
In these expressions, {i,j, k, 1} refer to cartesian compo-

nents and 0,4 is the Kronecker delta. For the case of

Jf’i)jkl the indices correspond only to tangential to the

2D material components. The constants x3 and o3 are
the only independent values of the respective tensors. We
should note that the first terms in Eq. (26) represent self-
phase modulation (SPM) while the second terms describe
the cross-phase modulation (XPM). Furthermore, we un-
derline that Eq. (26) contains only terms that are phase
matched by default, irregardless of the specific propa-
gation constants ﬁél), 562) or frequencies wq,ws chosen.
By substituting Eq. (26) into Eq. (25) and removing the
field amplitudes we can evaluate the nonlinear parame-
ters from the respective integrals as

. Wi1€o 4
Vo1 = 16N? //X3 {2\61\ |e?| } (28a)
_1 . e
Vo1 = 716N12 o3 |2]eq|* + ‘eLH‘ de, (28b)

which are the SPM bulk and surface, respectively, non-
linear parameters of the field at w; and

= wlgo // |:|e ~e*|2
Vb,12 8NN, X3|l€1 - €y

+ler - eal? + [ereaf2]dS,  (20a)

e [ oallenneny
s12 = ——— [ o3||e; ‘e
Vs,12 SN, N, 3|1€L,] "€
e - e + fer Ple 2] de
(29b)




which are the XPM bulk and surface, respectively, non-
linear parameters for the cross phase modulation expe-
rienced by the field at w; due to the field at wy. No-
tice that in ~,; we did not include the imaginary unit
1 in the parameter, which will be later included in the
complete NLSE equation. Regarding the second field
at wy, the SPM contribution can be ignored since the
field is considered weak and the XPM parameters are

Yo,21 /w2 = Vp12/w1 and s 21 = Vs, 12

B. Saturable absorption

We now move on to the SA term in Eq. (25). If the
SA material is graphene then in the general case the SA
nonlinear current is given by Eq. (12) which is comple-
mented by the rate Eq. (13). For the case for CW fields
and modes with low confinement one can also use Eq. (17)
without a rate equation. Substituting the former, more
general, expression into Eq. (25) we derive for the field
at wi that

1 A
- 7671551)2 /ef “Jsat1(r, t)dl =
4/ N, '

Ointer _ NC('I Y, )
4N, /(l 2Naat )'el 1@ e Ai(z0),

(30)
from which we can extract the saturable non-linear loss
parameter

Ointer NC(I7 Y, t) 2
= —— 1-—= ds.
Usat,1 AN, / < I Nout ‘el,H (1‘,y)|

(31)
The non-linear loss parameter for the second field at wo
is found by changing index 1 to 2. We also underline that
since we attribute the SA effect only to the first field, then

in the rate Eq. (13) we can substitute |[E[? = |E, 1\ SO
that it leads to
N,
on,_ Relowme) (= groen e
8t 2N1h(.d1 T e
(32)

Thus, the parameter ogat,1 describes self absorption mod-
ulation, that is the modulation of the absorption of field
1 by itself, while a,,2 describes cross absorption modu-
lation, the modulation of the absorption of field 2 by the
presence of field 1. We should also note that for graphene
the strong field in frequency wy will saturate losses for the
field in wy even if the two frequencies are not close to each
other [55].

Finally, we combine all the non-linear parameters into
two coupled NLSE equations

0
22

0 (1) 0?
(1/vgm — 1/v 1))8T 52 6T2

+ (i1 + ’Ys,1)|A1| Al + agar,1 41 + 7141,
(33a)

(a) (b) |
Air Graphend TE [E2
T |
Si0, 0
(c) (d) )
Alr Graphene TE IE|2
SisN, .
Si0, 0

FIG. 2. Cross sections of a (a) silicon slot waveguide and
(c) buried silicon nitride waveguide. On the top face of the
waveguides a single monolayer graphene is deposited. (b),(d)
normalized mode profiles of the field components parallel to
the graphene sheet for the waveguide in (a) and (c), respec-
tively. In (b) and (c) graphene is depicted with a dashed black
line.

9,

0 62
0z 1/Ué2 )

(1/Vgm = T~ *62 or?

+ (16,21 + 73721)|A1‘ As + gap 242 + 7A27
(33D)

where we adopted a retarded time frame T' =t — z/vgm,

véy) is the group velocity of the v-th field, vgn =

(vg Y (2)) /2 the average group velocity and we retained
only the first two terms for the linear dispersion. It is
also worth noting that Eqs. (31)-(33) can also be used
to describe propagation in waveguides with few-layer-
graphene consisting of Ng un-coupled monolayers. In
this scenario both linear and non-linear conductivities
are multiplied by N, [except in Eq. (32)] and all the lay-
ers share the same saturation intensity/relaxation time
[22].

To summarize, Eq. (33a) for the field at w; contains
the contributions from GVD, SPM, self-SA and non-
saturable linear losses, while Eq. (33b) for the field at wo
contains contributions from GVD, XPM, cross-SA and
non-saturable linear losses. For the numerical solution of
Eq. (33) we employ the Split-Step Fourier (SSF) method,
where for each step dz we evaluate N, from Eq. (32) as-
suming zero initial condition and taking the value of | A; |2
from the previous step. Then N, is used to evaluate the
nonlinear loss parameters which, together with the non-
linear parameters from the Kerr effect, is used to form
the nonlinear operator for the SFF method.

IV. SIMULATION RESULTS

In this section we will first evaluate the SA non-linear
parameters assuming CW excitation and subsequently
study pulsed excitation. For pulsed excitation we will
also show when the Kerr effect becomes relevant and how



this combined with linear dispersion can lead to quasi-
solitonic behaviour. In all cases we assume that only
the dominant TE polarised waveguide mode is excited.
The waveguides that are going to be used can be seen
in Fig. 2(a),(c): First, a silicon slot waveguide on a sil-
icon oxide substrate with dimensions 360 nm x 180 nm
and a 40 nm gap. A graphene monolayer is deposited
on top of the waveguide. In Fig. 2(b) we plot the norm
of the electric field parallel to the graphene sheet, which
in this case is |[Ej|* = |E;|* + |[E.|>. The placement
of graphene allows it to interact with the strongly con-
fined field in the slot region of the waveguide. The other
waveguide that we are going to use is the silicon nitride
waveguide seen in Fig. 2(c), which was used in an exper-
imental SA study [33]. The dimensions of the SizNy4 are
1500 nm x 600 nm and again a graphene monolayer is
deposited on the top face of the waveguide, as seen in
the schematic. In Fig. 2(d) we plot the norm of the field
parallel to graphene. It can be seen that the field is a lot
less confined and has a much smoother profile than the
one of the slot waveguide.

A. CW excitation

In Fig. 3 we plot the SA nonlinear loss parameter (nor-
malized to the zero power value of the saturable losses)
versus the input average CW optical intensity evaluated
as |A|?/Aeqr, where A is the complex field envelope [see
Eq. (19)] of the guided mode and A.g is the mode’s effec-
tive field area [53]. We underline that we use the effective
mode area so that results can be presented as average op-
tical intensities, which is a more “native” quantity in SA
description. The actual guided power |A|? can be evalu-
ated by multiplying values with A.g-.

We compare our results with a number of different SA
models that are presented here. The solid blue curves are
evaluated by Eq. (31) and Eq. (32) taking into account
the carrier diffusion term. The dashed blue curves are
evaluated by the same equations but without the carrier
diffusion term. This is equivalent with using Eq. (17)
for the non-linear saturable current. The red curves are
evaluated through a model proposed in [33] which can be
expressed through the following expressions,

%ng%ﬁa—Nymum, (34a)
ON, sat.0(1 — No/2Ngi)| A2 N,
— « t70( / t)| ‘ - —, (34b)
ot thW T

where g, is the power loss coefficient associated with
the saturable losses in the low (zero) intensity limit and
W is the graphene length in the waveguide cross section.
For the case of the silicon slot waveguide we considered
W = 760 nm (two silicon wires plus the slot) and and for
the silicon nitride waveguide W = 1500 nm (full width
of the silicon nitride). In the silicon slot waveguide, W
was chosen to extend to the full width of the waveguide
(and not just the slot area) so that we take into account

(a) = This work === No diffusion
—— Demongodin ef al. [33] === Simple
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FIG. 3. Normalized saturable loss parameter versus average
input CW intensity in the (a) silicon slot waveguide and (b)
silicon nitride waveguide. Blue solid curves correspond to
Eq. (31) and (32) and red curves to Eq. (34). The dashed
blue curves are the same as the blue solid curves, but with
carrier diffusion turned off (D = 0). The black curves serve
as a reference for the case of a plain wave and are evaluated
from Eq. (35). On the curves we note the effective saturation
intensity predicted by each model. Insets show the respective
waveguide cross section and the evaluated effective mode area.

the evanescent field and the E, component guided in the
silicon wires. Choosing a smaller W leads to an artificial
enhancement of the source term in Eq. (34b). The black
curve corresponds to the simplest possible SA model
Qsat,0 1
Qgat, = D) ) |A|2 ) (35)
- Aefflsat

which, by definition, saturates when |A|?/A.g is equal to
It = 1 MW /cm?. Physically, this last model would be
accurate if the mode’s profile was uniform and all of the
guided power interacted with graphene, i.e. a plane wave
illuminating an infinite free standing graphene sheet.
This model serves as a point of reference to highlight
how SA is differentiated in the respective contemporary
waveguide.



We can draw several useful conclusions from Fig. 3(a)
and (b). First of all, according to our approach we
can evaluate the effective CW saturation intensity spe-
cific to particular waveguide mode, which is 5 MW /cm?
and 15.4 MW /em? for the silicon slot and silicon nitride
waveguide, respectively. The difference between the two
values can be explained from the fact that in the silicon
slot waveguide graphene is placed close to the maximum
of the tightly confined field in the slot area and thus its
losses can be saturated at lower power. On the other
hand, in the silicon nitride waveguide graphene is placed
on the top face which is very far from the the center of
the waveguide, where the field takes its maximum value.

Furthermore, the red and blue curves predict differ-
ent saturation intensities, with our results suggesting 2-5
times higher effective saturation intensities. It can be
seen in Fig. 3(a) that both solid and dashed blue curves
are distinct to the red curves, implying that the differ-
ences of our model from that of [33] is not attributed just
to the inclusion of the carrier diffusion term but also to
the fact that we take into account the spatially-dependent
power density. Continuing, in Fig. 3(b) the dashed blue
and red curves are very close to each other, which means
that in this case the difference between our approach
(solid blue) and that of [33] (red curve) is attributed
solely to the inclusion of the carrier diffusion term. We
believe that the agreement of the no-diffusion and [33]
model is because |A|?/W, that is used in Eq. (34b), is a
much better approximation of the real power distribution
over graphene in the case of the silicon nitride waveguide
than the slot waveguide. Nevertheless, it is interesting
to note that even in low confinement waveguides carrier
diffusion is still relevant and should be included in the
SA modelling.

Finally, we discussed in Section II B that in experimen-
tal results the more homogeneous the field the better the
It approximation. At first, this seems to contradict
our results as the silicon nitride waveguide deviates more
from the nominal 1 MW /cm? than the silicon slot waveg-
uide. The explanation lies with the fact that only a small
portion of the guided field interacts with graphene and
thus even though the mode profile is smooth on graphene
a significant portion of the guided power is wasted.

B. Pulsed excitation

To demonstrate how a pulse propagates through the
silicon slot waveguide with graphene we show two exam-
ples: a long (66 ps FWHM, 10 mW peak power) and a
short (250 fs FWHM, 500 mW or 1 W peak power) gaus-
sian pulse. The propagation length, defined in the linear
(low power) regime as the length at which power drops
by 1/e, is calculated to be Lpyop = 18.4 pm. For the long
pulse the group velocity dispersion and Kerr nonlinear
length are Lp = 163 m and Ly;, = 10.4 mm, respec-
tively, while for the short pulse the same parameters were
Lp = 2.3 mm and Lyp, = 208 um or Ly, = 104 pum when
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FIG. 4. Normalized output power versus time at various prop-
agation distances of the silicon slot waveguide for a (a) long
and (b) short pulse input. Solid curves correspond to the full
model while dashed curves are evaluated as if SA was instan-
taneous or, equivalently, CW. In the latter case, we modified
the saturation intensity to agree with the effective one calcu-
lated by the CW analysis, namely we set Isat = 5 MW/cm2.
In (a) the two models are in agreement, there is noticeable
pulse compression as the pulse propagates and the pulse de-
formation is symmetric. The FWHM of the pulses is noted
with arrows on the curves. In (b) the leading edge of the
pulse suffers greater losses than the trailing edge leading to
asymmetric deformation and slight shifting of the pulse peak.
These changes are not demonstrated by the dashed curves,
which retain the symmetry.

the peak power is 0.5 or 1 W, respectively. If the initial
gaussian pulse is of the form A;, = /Pyexp(—=T2/21%)
then the above characteristic lengths are defined as

T2
Lp=-2", 36a
D=3 (36a)
L ! (36b)
i ’YSPO ’
where in our case 7; = —9600 W Im™! is the Kerr

nonlinear parameter from graphene, since other contri-



butions are negligible, and By is the GVD parameter
defined in Eq. (24). Specifically on the nonlinearity of
the bulk materials, the nonlinear contribution of the
Si areas was calculated to be 4+45 W~'m~! which is
above two orders of magnitude lower than graphene’s.
The third order graphene conductivity was taken to be
o3 = +il.4 x 10721 Sm?/V? which corresponds to defo-
cusing behaviour (vs < 0). The B2 parameter was calcu-
lated to be 9.84 ps?/m. Choosing the waveguide length
equal to L = 2L, ~ 40 pm we expect SA to be the
dominant effect since for all cases L < Lp, Lny,.

The normalized output power of the long pulse is
shown in Fig. 4(a) at different propagation distances.
Solid curves represent the model developed in this work,
taking into account both the finite relaxation time and
carrier diffusion. On the other hand, dashed curves
were calculated by ignoring the finite relaxation time [in-
stant response, Eq. (16)]. Note though that the waveg-
uide characteristics and carrier diffusion are still included
by choosing the effective saturation intensity from the
CW analysis presented in the previous section as I,y =
5 MW /cm?. The two models are almost identical and
we can deduce that a simplified ”instant” model suffices
to simulated long pulse excitation but the saturation in-
tensity has to be modified according to the CW analy-
sis. Considering the effects of SA, we can see that there
is a ~ 20% temporal compression of the pulse, as the
low power parts suffer much higher losses than the peak
of the pulse. We underline that we chose a low peak
power in order to demonstrate how effectively graphene
SA can be used in compact silicon devices: even for 10
mW peak power absorption is greatly saturated while the
Kerr effect at this power level and propagation distance
is negligible. Note though that for pulse compression ap-
plications since SA is an absorption based effect some
insertion losses should be expected. To this end, higher
peak powers will lower propagation losses even further
but will require higher propagation distances to achieve
the same pulse compression. Finally, we briefly discuss
the effect of an increased relaxation time. According to
Eq. (14) for the saturation carrier density Ny, of Table I
and 7 = 150 fs, we evaluate Iy,c ~ 11 MW /cm?. Conse-
quently, due to the increase of the saturation power the
pulse of this example would experience only 11% tempo-
ral compression.

The short pulse propagation can be seen in Fig. 4(b).
For clarity we have only drawn the final output pulse for
the instant model (dashed curves). The solid curves now
show a distinct asymmetric evolution of the pulse. Car-
riers begin accumulating at the leading edge of the pulse
and because of their comparable to the pulse duration
life-time lead to lower absorption of the trailing edge.
This also results into a slight shift in the position of the
pulse peak. For higher propagation distances, this effect
can become even more pronounced. On the other hand,
the instant model discussed above cannot predict this
kind of behaviour. Furthermore, even thought the 500
mW peak power is quite low for the duration of the pulse,
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FIG. 5. (a) Spectra of the initial pulse at various propagation
distances. For up to 170 pm there is little Kerr contribu-
tion and SA is the dominant effect. At 260 ym and 350 pum
the Kerr effect becomes evident due to the formation of the
two peaks. (b) Temporal evolution of the pulse at the same
propagation distances. When the Kerr effect becomes strong
we observe that the interplay between SA, the Kerr effect
and linear dispersion leads to the increase of the pulse peak
and further temporal compression. Specifically, the decrease
of the pulse duration lowers the dispersion length Lp which
slowly approaches the nonlinear length L, and thus solitonic
regime. This phenomenon is possible due to the defocusing
character of graphene’s Kerr nonlinearity (s < 0) and normal
dispersion regime (32 > 0).

it can be seen that absorption is heavily suppressed, as
at 40 pm transmission is 0.9. On a final note, the 250
fs FWHM pulse is considered short with respect to the
relaxation time 7 of 1.67 ps considered; if the latter be-
comes comparable or even shorter than the pulse dura-
tion then asymmetry would become less pronounced and
results would approach those of Fig. 4(a) but for higher
peak powers and longer propagation distances, since de-
creasing 7 would lead to an increase of Igus.

In the previous example, for the given power level
and propagation distance the Kerr effect was negligible.
But because SA lowers absorption the Kerr effect will
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FIG. 6. Normalized output power at different propagation
distances for the scenario of simultaneous propagation of two
pulses at different wavelengths in the silicon slot wavegide.
Solid curves correspond to the weak long pulse at A\; while
dashed curves to the high-power short pulse at \2. As the
pulses propagate, the long pulse experiences cross absorption
modulation from the short pulse at the region where temporal
overlap exists. (inset) Zoom in around the short pulse to
highlight the asymmetric temporal shaping of the long pulse,
which is a direct consequence of the finite SA relaxation time.
As a consequence of cross absorption modulation the short
pulse is imprinted onto the A1 channel.

eventually manifest for higher propagation distances. To
demonstrate this we use the above short pulse but with
1 W peak power and increase the propagation distance to
350 pm. The normalized spectral power density is shown
in Fig. 5(a), where we observe that for propagation up to
170 pm the Kerr has little to no impact. But, at 260 ym
and 350 um we can spot the onset of the characteristic
splitting of the peak at the central frequency due to the
Kerr effect. The asymmetry in the spectrum is again the
result of the finite SA relaxation time. What is more in-
teresting is that in the time domain, shown in Fig. 5(b),
we observe that when the Kerr effect becomes relevant
the peak power of the pulse is increased and further tem-
poral compression takes place. This rather unexpected
increase of the peak power can be intuitively understood
by noting that due to SA the pulse duration is decreased,
which according to Eq. (36a) lowers the dispersion length.
On the other hand the nonlinear length Ly, of Eq. (36b)
is also lowered by the increase of the peak power but at a
significantly lower rate. As a result, Lp approaches Ly,
and we have confirmed that around 400 pgm propagation
distance Lp = Lyt,, which is a known condition for the
formation of a quasi-soliton. Note that this phenomenon
is only possible due to the defocusing Kerr nonlinearity
of graphene (s < 0) combined with the normal linear
dispersion (2 > 0): by artificially reversing the sign of
the Kerr nonlinearty the peak power increase vanishes.
Finally, to further explore possible applications of
graphene SA in photonic waveguides we present in Fig. 6
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the simultaneous propagation of two channels at wave-
lengths Ay = 1549.6 nm and Ay = 1550.4 nm. Results are
evaluated by solving the coupled partial derivative sys-
tem of Eq. (33). In the first channel propagates a weak
long gaussian pulse (33 ps FWHM, 0.1 mW peak power)
and in the second channel a high power short gaussian
pulse (250 fs FWHM, 500 mW peak power). Note that
the weak signal could also be CW and that only the sec-
ond wavelength is responsible for the saturation of ab-
sorption. It can be seen that the the high power pulse
in the second channel is gradually imprinted to the first
channel. Zooming in (inset), the asymmetric evolution of
the weak pulse due to the finite carrier life time is evident
and the resulting pulse is no longer gaussian. The final
FWHM pulse duration for the weak pulse at A\ is found
to be around 0.61 ps which is a considerable reduction
since the initial value was 33 ps. This example highlights
a completely passive and compact way to duplicate data
streams between optical channels. The restriction is that
the the configuration only works between high power and
low power signals.

V. CONCLUSIONS

The main focus of this work was to present a solid the-
oretical framework to model propagation of light under
the effect of SA in waveguides with graphene, together
with the usual third-order nonlinear effects. We have
discussed how experimental data should be introduced
into the model and shown the importance of including
the carrier diffusion term for high confinement waveg-
uides. Under these conditions we have demonstrated that
through a CW analysis we can extract an effective sat-
uration intensity value (applicable to the specific guided
mode) which can then in turn be used for a simplified
approximation of the propagation of ps-long pulses. For
pulses in the sub-ps regime though, the full model includ-
ing the finite SA relaxation time and the carrier diffusion
term, must be used to fully capture the temporal evolu-
tion under SA. The resulting power threshold for SA is
very low compared to other non-linear effects, such as the
Kerr effect. Nevertheless, the combined effect of SA, the
Kerr effect and linear dispersion can further enhance the
SA pulse compression. Finally, we have proposed a con-
cept scheme for duplicating data streams between optical
channels in integrated photonic waveguides.
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