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We outline a comprehensive model for ultrafast optical pulse propagation along nonlinear graphene-
comprising integrated photonic waveguides. An electrodynamic graphene hot-electron model (GHEM) is
used to capture the temporal dynamics and intertwined absorptive and refractive nonlinearity to explore a
strongly non-perturbative photoconductivity regime that transcends third-order phenomena. We propose a
formalism to abstract the 2D material-related modal properties of the waveguides in the static/continuous
wave regime that can also be plugged into a generalized nonlinear Schrödinger equation (NLSE) frame-
work. Our model of optical pulse propagation consists of a coupled NLSE along with the nonlinear
equation system of the GHEM. We demonstrate pulsed applications pertinent to integrated photonic com-
ponents, namely: improvement of the extinction ratio of a non-return-to-zero (NRZ) modulated bitstream,
pulse shaping, spectral broadening, and optical-shock formation leading to pulse breaking and soliton
formation. Our NLSE-GHEM extracts graphene nonlinearity from fundamental physics without resorting
to phenomenological correction terms or fitted parameters, shows good agreement with recent experiments,
and can potentially be used in the study of high-power on-chip applications such as pulsed lasers and
frequency combs. © 2022 Optica Publishing Group. One print or electronic copy may be made for personal use only. Systematic
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1. INTRODUCTION

The last decade has witnessed a steady increase in high-power
applications of integrated graphene-comprising waveguides [1],
since the first evidence of its large third-order NIR nonlinearity
[2]. Graphene, the most extensively studied 2D material [3],
has multiple attributes that are attractive to photonic integrated
circuits (PIC), its most important being the electrical tunability
of its optical conductivity [4] and the compatibility to the silicon
platform [5]. The combination of these two properties has thus
far given a large number of low-power/linear regime applica-
tions in passive and tunable graphene-comprising PICs, such as
modulators [6–8], switches [9–11], and photodetectors [12, 13].
In contrast, the high-power/nonlinear applications in PICs have
mostly been limited to proofs-of-concept and attempts to accu-
rately quantify graphene nonlinearity (GNL) [14–18]. It must be
pointed out that light-matter interaction in PICs is quantitatively
different than in nonlinear structures typically studied by fo-
cused laser and THz beams, i.e., normal incidence on graphene
sheets lying on dielectric substrates [19, 20] or sandwiched be-

tween fibers [21].
One of the reasons behind the slow pacing in high-

power/nonlinear applications in graphene-comprising PICs is
the emerging understanding of the intricacies in GNL and, ar-
guably, the starting point: GNL was initially approached as
a third-order process, similar to that arising in bulk nonlinear
semiconductor such as silicon [22]. Early theoretical studies
based on semi-classical and full-quantum mechanic approaches
[23–25] produced a wide spectrum of values for graphene’s third-
order surface conductivity tensor, σ(3), which was then used in
photonic and hybrid-plasmonic waveguide engineering [26, 27].
While experimental evidence in free-space structures partially
corroborated the theoretical trends and unveiled interesting as-
pects pertaining to the refractive part sign of the nonlinearity
[28, 29], the dependence of the GNL magnitude on the 2D mate-
rial properties, e.g., the sample’s equivalent chemical potential
(Fermi energy) and quality (carrier mobility, level of impurities),
remained unclear. Moreover, experiments with nanophotonic
waveguides accessed a GNL regime that was phenomenologi-
cally richer, containing both refractive and absorptive contribu-
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tions, and more strongly nonlinear, in a manner that could not
be modeled in a classical perturbative third-order framework
[14, 17, 18]. These results hint that an electrodynamic model is
more suitable [16, 30], as it properly treats the hot free-carrier
plasma that is photogenerated in graphene when illuminated by
high optical intensities, quite similar to the effects in bulk/3D
semiconductors [31].

The work presented in this paper takes this last avenue, i.e.,
it consolidates refractive and absorptive non-perturbative GNL
in a single graphene hot-electron model (GHEM) [32] and further
adapts it to ultrafast pulse propagation along highly-confining
nanophotonic waveguides, by means of the generalized non-
linear Schrödinger equation (NLSE) framework. Our approach
replaces the disjoint phenomenological treatments of GNL {e.g.,
quasi-perturbative third-order nonlinearity [16], saturable ab-
sorption (SA) [18, 33, 34], and saturable photo-excited carrier re-
fraction (SPCR) [17]} with a single comprehensive model, which
can be used to model and interpret a large class of nonlinear
phenomena in graphene-comprising waveguides. The GHEM
seamlessly incorporates all parameters related to graphene’s
electro-optical tunability, fabrication quality, and associated tem-
poral dynamics [35–37]. We formally extract eigenmode-specific
parameters for the NLSE in a formalism that is applicable to
any waveguide (fiber or integrated) and any nonlinear 2D ma-
terial [38, 39]. Finally, to showcase the potential of this NLSE-
GHEM approach, we present examples of pulsed applications
in emerging nanophotonic waveguide platforms [40], that can
be extended to on-chip pulsed laser platforms [41] or frequency
combs [42], where cavity build-up produces intensity levels that
necessitate the usage of a GHEM.

The remainder of this paper is organized as follows: Section 2
outlines the NLSE framework and the extraction of its param-
eters from rigorous waveguide analysis. Section 3 describes
the GHEM used to produce the photoconductivity (nonlinear-
ity) of graphene. Section 4 deals with the optimization of the
waveguide and the graphene monolayer in static conditions and
validates the NLSE parameters extracted. Section 5 presents
ultrafast pulsed-regime examples computed with the NLSE-
GHEM and showcases a number of applications and emerging
nonlinear phenomena. Section 6 concludes and summarizes the
paper.

2. MODELING PULSE PROPAGATION IN NONLINEAR
WAVEGUIDES

A. Nonlinear Schrödinger Equation Framework
One of the most popular methods for modeling pulse propa-
gation along nonlinear optical waveguides is the NLSE frame-
work [43]. It relies on the slowly-varying envelope approxima-
tion (SVEA) allowing only the temporal envelope of a signal
to be propagated in a reflectionless manner along a nonlinear
waveguide. Even though the NLSE is strictly valid close to
a central/carrier frequency, it can accurately treat wideband
and ultrafast signals as long as the dispersive properties of the
waveguide are rigorously treated [44].

The NLSE was first used for low-nonlinearity bulk structures
such as optical fibers [43] and then expanded to nanophotonic
diffraction-limited and/or higher-nonlinearity structures such
as integrated semiconductor waveguides [22]. The standard
form of the NLSE treats dispersion together with perturbative
refractive third order nonlinear phenomena such as the Kerr
effect (self-phase modulation), cross-phase modulation (in dual-
channel), or generalized four-wave mixing (for three or more
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Fig. 1. Schematic of the pulse propagation along an integrated
graphene-comprising nonlinear waveguide. The distortion of
the output pulse can range between cases such as: (1) linear
absorption, (2) temporal compression, or (3) frequency chirp-
ing, depending on input pulse and graphene properties. For
tuning the latter, an abstracted electric circuit is also depicted.

channels). Absorption, linear and perturbative/third-order, can
easily be introduced in the NLSE, while more complicated non-
linearities, absorptive or refractive, need more careful treatment.
For instance, free-carrier absorption (FCA) and dispersion (FCD,
also called plasma refraction) in silicon and hybrid photonic
waveguides [22, 45, 46] requires heuristically introduced cor-
rection terms that couple the NLSE to other rate-equations that
need to be solved in parallel.

The advent of 2D materials, with electrically-tunable
graphene at its forefront, brought new aspects to the NLSE for-
malism. Electromagnetically, graphene can be formally modeled
by surface conductivities σ(m) in units of [S(m/V)(m−1)], with
m = 1 and 3 corresponding to linear and third-order nonlinear
(perturbative) conductivities, respectively. The introduction of
graphene to nonlinear integrated waveguides started with the
rigorous re-definition of third-order nonlinear parameters based
on its surface conductivity tensor [26, 27, 47] and moved on
to modeling the more advanced nonlinear effects in graphene,
such as SA [33, 34, 48] or SPCR [17, 30]. Despite some theoreti-
cal works [23–25], most of these formulations relied on specific
experimental measurement or phenomenological estimation of
macroscopic graphene properties, e.g., its third order surface con-
ductivity σ(3) [29, 49], equivalent nonlinear index n2,eq [27, 50],
or saturation intensity Isat [33]. Therein lies the gap that our
work aims to bridge: We adopt a microscopic electrodynamic
GHEM for the complex (absorptive and refractive) nonlinearity
of graphene which we adapt to the NLSE, effectively allowing
for proper treatment of non-perturbative nonlinearity induced
by ultrawideband signals such as the ones produced by pulsed
sub-ps lasers. Moreover, the GHEM inherently introduces the
tunability of graphene through its chemical potential µ0, a value
that can be tailored at fabrication or electrically reconfigured
by gating [16] or biasing [6]. An abstracted schematic of the
structure studied in this work is depicted in Fig. 1, where the
graphene and waveguide properties can be used to calculate the
output pulse distortion from the nonlinear waveguide.

The photoconductivity ∆σ
(1)
NL = σ

(1)
NL − σ

(1)
lin [where σ

(1)
lin is

the linear conductivity of graphene in the absence of irradia-
tion or, more generally, in a low-power regime], i.e., the light-
induced change in its surface conductivity, is modeled as a free-
carrier effect using the GHEM and is then plugged as an extra
time-dependent term in the NLSE, δGNL(z, t), similar to how
FCD/FCA are treated in silicon and hybrid-plasmonic waveg-
uides [22, 45]. The difference, here, is that δGNL(z, t) depends on
the spatiotemporal pulse amplitude in a much more complicated
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manner compared to the Soref model for free-carriers in silicon
[31]. In this work, following the electromagnetic derivation of
[34], we formulate a basic single-channel NLSE for the complex
optical pulse envelope A(z, t) (in units of [W1/2]) modulating a
carrier frequency ω, under the e−iωt phase convention, as

∂A
∂z

=

[
− α

2
+ B + iγNL|A(z, t)|2 − δGNL(z, t)

]
A(z, t). (1)

In this compact form, the waveguide-related constants are: α
is the power loss coefficient (real positive) which includes a

contribution from graphene through Re{σ
(1)
lin }. γNL is the com-

plex third-order nonlinear parameter (including Kerr effect and
perturbatively induced nonlinear absorption or transparency)
which comes exclusively from bulk/3D nonlinear materials and
is totally unrelated to graphene. Note that graphene’s nonlin-
ear response can be adequately described as a third-order phe-
nomenon, and thus by a Kerr-type surface conductivity σ(3) and
a nonlinear parameter γG

NL [26], only up to moderate illumina-
tion powers which fall short of the regime targeted in this work;
nevertheless, the GHEM can be used to compute the value of this
complex quasi-perturbative σ(3) [16]. B is the linear dispersion
operator, including group-velocity dispersion (β2) and higher,

B =
∞

∑
m=2

im+1 βm

m!
∂m

∂tm , (2)

and t is the retarded-envelope time frame, moving with
the mode group velocity. Finally, the complex-valued (z, t)-
dependent term δGNL, qualitatively proportional to ∆σ

(1)
NL, in-

cludes all nonlinear refractive and absorptive contributions from
graphene. Notice how δGNL is added with a minus in Eq. (1), so

that an absorption saturation characterized by Re{∆σ
(1)
NL} < 0

introduces a “gain” that counteracts the linear loss factor α. In
the same sense, and recalling that self-focusing refraction corre-
sponds to Re{γNL} > 0, the ± sign in Im{∆σ(1)} corresponds
to a defocusing (+) or self-focusing (−) refraction.

The split-step Fourier method (SSFM) [43] is the tool used to
numerically integrate the NLSE. The SSFM splits the waveguide
in a cascade of segments and slides the temporal envelope of the
pulse through each segment until the end of the waveguide is
reached. At each of these steps it calculates the distortion due to
the combined effect of the linear (α and B) and nonlinear (γNL
and δGNL) terms and, of course, the pulse envelope at the input
of the segment. The nonlinear (time-domain) step in Eq. (1) can
be written as

A(z + ∆z, t) = A(z, t) exp
{[

iγNL|A(z, t)|2 − δGNL(z, t)
]
∆z

}
,

(3)
where ∆z is the length of the waveguide segment, chosen so
that the magnitude of the exponent is sufficiently small, e.g,
π/100. The effect of the linear terms in Eq. (1) (absorption α and
dispersion B) is more easily added in the spectral domain, where
the Fourier transform is used. The SSFM algorithm iterates the
time/frequency-domain operations while stepping along the
z-axis until the end of the waveguide has been reached.

B. NLSE Parameters
A key assumption for the validity of the NLSE framework is
that the eigenmode profile (the eigenvector) is not significantly
affected by nonlinearity-induced changes in the electromag-
netic properties of the materials. This assumption is valid for

graphene-comprising integrated waveguides in the NIR up to a
very high power threshold [48], since light guidance is provided
by the underlying silicon waveguide/structure while graphene,
though it interacts with the mode, does not itself guide; an ob-
vious requirement is that the geometric waveguide dimensions
and operating frequency are far from the mode cut-off.

Under this assumption, the parameters of the NLSE in Eq. (1)
are extracted from spectral-domain finite-element method (FEM)
modeling of the waveguide cross-section using the full-vector
and/or tensor properties of the involved bulk and sheet materi-
als [26]; note that, in the absence of magnetic biasing, graphene
is an isotropic 2D material so that its σ̃(1) second-rank tensor
has two nonzero elements both equal to a complex scalar value.
The FEM allows for treatment of arbitrarily-shaped geometries
with adjustable spatial resolution; these aspects are critical for
contemporary nanophotonic waveguides with narrow features.
The eigenvalue and eigenvector of the desired mode(s) of the
waveguide are extracted at the specified operation frequency
using a custom/in-house FEM-based mode solver [51]. The
eigenvalue is typically the complex-valued effective refractive
index, neff, whose imaginary part is directly related to the at-
tenuation constant α = 2Im{neff}k0 (waveguide propagation
losses) while a spectral sweep and differentiation on the real part
produces the dispersion coefficients βm of Eq. (2). The eigenvec-
tor is essentially the vector E-field profile in the cross section,
ẽ(ω; x, y), whose post-processing yields the third-order nonlin-
ear parameters, e.g., γNL, from bulk- or sheet-material nonlinear
properties [26].

It is worth noting that for NIR optical waveguides, where
graphene acts as a perturbation to the propagation mainly affect-
ing the losses, the power attenuation coefficient of the waveg-
uide can be calculated perturbatively, i.e., from the xy-profile of
the eigenvector ẽ of the waveguide in the absence of graphene
and the graphene conductivity σ(1) as

α =
1

2Pn

∫
G

Re{σ(1)(ω; x, y)}|ẽ∥(ω; x, y)|2dℓ. (4)

In this expression, the complex vector ẽ∥(ω; x, y) is the E-field
component of the eigenmode that is parallel to graphene at
frequency ω,

∫
G dℓ denotes integration along the trace of any

graphene sheet(s) in the waveguide cross-section (xy plane)[e.g.,
along the thick red lines in the top-row panels of Fig. 2], and

Pn =
1
2

Re
{ ∫∫

S
(ẽ × h̃∗) · ẑdxdy

}
(5)

is the eigenmode’s power normalization constant (subscript “n”),
measured in Watt. The surface integral in Eq. (5) is in the cross
section of the waveguide, i.e., in the xy plane. If graphene is spa-
tially uniform, as is common to assume in photonic waveguides,
then σ(1)(ω; x, y) → σ(1)(ω) and can thus be moved outside the
integrand of Eq. (4).

Based on this observation, the δGNL(z, t) in the NLSE Eq. (1)
is proportional to the induced photoconductivity predicted by the

GHEM, ∆σ
(1)
NL(z, t) = σ

(1)
NL(z, t)− σ

(1)
lin , as in

δGNL(z, t) = ςNLSE∆σ
(1)
NL(z, t)/σ0. (6)

The proportionality factor in Eq. (6) is a real positive constant,
characteristic of the specific waveguide mode, given by

ςNLSE =
σ0

4Pn

∫
G
|ẽ∥(ω; x, y)|2dℓ, (7)
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in [1/m] units, where graphene’s universal optical conduc-
tivity σ0 = q2/4h̄ ≈ 61 µS (q is the electron charge and h̄
is the reduced Plank constant) has replaced the conductivity
inside the integrand in Eq. (4). Evidently, for a waveguide
comprising a spatially uniform graphene sheet of conductiv-
ity σconst, the modal power attenuation constant would be
α ≈ 2ςNLSE[Re{σconst}/σ0].

The modal parameter ςNLSE of Eq. (7) translates the GHEM-

predicted effective photoconductivity in graphene, ∆σ
(1)
NL(z, t), to

nonlinear refraction and absorption in the NLSE. In order for this

∆σ
(1)
NL(z, t) to capture the spatial overlap of the eigenmode profile

with the graphene sheet(s), inside the waveguide cross-section,
an effective value for the E-field intensity must be adopted. We
define an effective area for the mode-graphene overlap as

AG
eff = 2Z0Pn

∫
G |ẽ∥(ω; x, y)|2dℓ∫
G |ẽ∥(ω; x, y)|4dℓ

, (8)

in units of [m2]. The derivation for this expression can be found
in Section 1 of the Supplemental Document, and it is based
on the proportionality of GNL magnitude on |E∥|2. Using this
effective area, the profile-averaged (effective) intensity that feeds

the GHEM to produce the ∆σ
(1)
NL is given by the simple formula

Ieff(z, t) =
P(z, t)

AG
eff

, (9)

where P(z, t) = |A(z, t)|2 (in Watt) is the power carried by the
envelope at a (z, t) point in space and time.

To wrap-up the NLSE/SSFM procedure at a given z-segment
of the waveguide with sufficiently small length ∆zi:

(i) The pulse envelope power at the start of the segment,
P(zi, t) = |A(zi, t)|2, and the segment length, ∆zi, are
known.

(ii) The effective intensity, Ieff(zi, t), to be fed to the GHEM is
calculated from Eq. (9).

(iii) Using a nonlinear model, such as the GHEM of [32] pre-
sented in Section 3, fed with the effective intensity Ieff(zi, t)
together with graphene-dependent parameters, the effec-

tive photoconductivity ∆σ
(1)
NL(zi, t) is calculated. This is, in

essence, the material response as the pulse is slid (trans-
lated) along this z-segment using an ODE time-integration
method; refer to the Supplemental Document, Section 6, for
more details.

(iv) The photoconductivity ∆σ
(1)
NL(zi, t) produces the

nonlinearity-distorted pulse at the end of the z-segment,
i.e., A(zi + ∆zi, t), using Eq. (3).

(v) Steps (ii)-(iv) can be iterated a couple of times, using the
pulse power at the midpoint, P(zi + ∆zi/2, t), in Eq. (9)
until the pulse at the end of the z-step converges.

(vi) The final pulse at the end of the step is transformed in the
frequency domain for the application of the linear NLSE
terms. This effect can also be split, applying “half” of it
before and after the nonlinear (time-domain) step.

The NLSE/SSFM then moves on to the following z-segment of
the waveguide. Finally, note that the waveguide segment length
∆zi can be adjusted along the propagation, in order to keep the

exponent sufficiently small, e.g., ςNLSE|∆σ
(1)
NL/σ0|∆zi ≤ π/100.
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Fig. 2. A selection of graphene-comprising integrated
photonic waveguides; the cross-sections and quasi-TE (x-
polarized) modal intensity profiles |Ẽ(x, y)|2 are given in the
top and bottom panels of each column, respectively. Graphene
sheets are marked with thick red lines on top-row panels. (a)
Vertical slot in SNOI [17]. (b) Buried SNOI ridge [18]. (c) Hor-
izontal Si-slot [34, 40]. (d) Si-wire clad with two graphene
sheets, marked with different colors on top panel [6].

Ref. Type AG
eff (µm2) ςNLSE (1/mm)

[17] Vertical SNOI slot 4.8 3.6

[18] Buried SNOI ridge 6.1 2.5

[34] Horizontal SOI slot 0.05 26

[6] Dual-graphene SOI rib 0.7 34

Table 1. Graphene nonlinearity-related parameters for the
selection of integrated photonic waveguides depicted in Fig. 2.

Figure 2 presents the calculated mode profiles for a selection
of integrated photonic waveguides relying on the SOI (silicon-
on-insulator) and SNOI (silicon nitride-on-insulator) platforms,
where graphene monolayers are marked with thick red lines.
In panel (a), a vertical SNOI slot from [17], including a PMMA
cladding over graphene and a few-nm oxide residual between
graphene and the top SiN ridge. In panel (b), a buried SiN ridge
from [18]. In panel (c), a Si-slot waveguide from [34], formed
by two Si-wires spaced by a 40 nm air slot; a similar fabricated
Si-slot is found in [40]. In panel (d), a Si-wire clad with two
graphene sheets spaced by a thin alumina layer from [6]; when a
voltage difference is applied to the two sheets, different-polarity
charges are accumulated on each of the two sheets thus changing
their chemical potential.

The corresponding NLSE parameters for the waveguides in
Fig. 2 , i.e., the effective area AG

eff from Eq. (8) and the propor-
tionality factor ςNLSE from Eq. (7), are listed in Table 1. Owing
to the waveguide concept exploited, as well as the higher index
contrast, the slot waveguide relying on the SOI platform offers
more than a tenfold improvement in the parameters compared
to the other waveguides, which means that the nonlinear power
thresholds are expected to be correspondingly smaller.

Finally, we stress again that all NLSE parameters are extracted
perturbatively here, i.e., assuming that graphene has a negligi-
ble contribution to the transverse waveguide mode profile, in
the linear and nonlinear regimes. Moreover, the formulas de-
veloped in this section can be used for waveguide geometries
with arbitrary spatial inhomogeneity in their 2D (and bulk/3D)
materials.
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3. A MODEL FOR GRAPHENE NIR NONLINEARITY

In the NIR, graphene’s optical surface conductivity, linear and
nonlinear, is primarily governed by the interband absorption
mechanism which is only available when its equilibrium chemi-
cal potential is lower than the half-photon energy, |µ0| < h̄ω/2,
owing to the Pauli exclusion principle. Above that value
graphene becomes practically transparent, while for |µ0| → 0
it exhibits the universal optical conductivity σ0 ≈ 61 µS; this
characteristic value is related to the 2.3% absorption by an air-
suspended monolayer, as absorption in this case equals σ0Z0,
which moreover equals π times the fine-structure constant,
1/137.

A. Microscopic Fermi-Dirac framework
This work relies on the electrodynamic optical nonlinearity pre-
dicted by the graphene hot-electron model (GHEM) developed
in [32], which tracks several microscopic physical quantities of
graphene in a Fermi-Dirac framework to finally extract the non-
linear conductivity from the well established Kubo formulas.
The core idea of the model is that the intraband and interband
conductivities are treated separately, each one linked to a differ-
ent rate equation: The intraband absorption term is responsible
for heating the 2D carrier plasma, increasing its total energy
density ED

T (in [J/m2]) and electronic temperature T, while the
interband absorption term is responsible for photogeneration of
free carriers, increasing their density by nPG (in [1/m2]); note
that as electroneutrality holds, the number of photogenerated
hole and electron densities is the same, equal to nPG. Both ab-
sorption processes are assumed to act instantaneously (in the
10 fs timescale), but the quantities ED

T and nPG decay with dif-
ferent lifetimes; in this work we assume values in the order of
τE = 1 ps and τrec = 10 ps for the plasma energy and carrier
recombination lifetimes, respectively.

A secondary aspect of the model in [32] is that a quasi-
equilibrium (QE) is assumed to be instated after the intraband
heating cools down but before the photogenerated carriers recom-
bine. In this transitional QE state, the carriers have re-assumed
the lattice temperature (T0, typically 300 K) but their density
and energy is still elevated. The duration of the excitation pulse
as compared to the lifetimes τE and τrec defines the temporal
dynamics of the system: The CW analysis in [32] reveals that
the magnitude of the GNL depends only on the ratio of τrec/τE .
Here, we consider pulse duration that falls in either of three
regimes, i.e., shorter than τE = 1 ps (but longer than the intra-
band momentum relaxation lifetime, which is in the tens of fs),
longer than τrec = 10 ps, or in between the two.

The final aspect of the model is that it introduces separate
quasi-Fermi levels (or chemical potentials) for the electron and
hole plasmas in the conduction and valence band, respectively:
These are {µe, µh} and {µe0 , µh0} for the hot and the QE states,
respectively. The relations between these quasi-Fermi levels
and the carrier and plasma-energy densities can be found in
Section II.B-D of [32] and are also repeated in Section 2 of the
Supplemental Document of this work, for completeness.

To summarize, the model is described by the following set of
six equations. The first two are the rate equations for intra- and
interband mechanisms,

∂ED
T

∂t
= ⟨Iabs⟩i −

ED
T − ED

QE

τE
, (10)

∂nPG
∂t

=
⟨Iabs⟩e

h̄ω
− nPG

τrec

(
1 +

nPG
nT0

)
, (11)

where ⟨Iabs⟩i/e is the effective absorbed intensity (in [W/m2])
corresponding to the intra/interband part of graphene’s con-
ductivity and nT0 is the total equilibrium (at the absence of ir-
radiation) carrier density, mainly depending on the chemical
potential µ0. The final four equation of the model are algebraic,
stemming from electroneutrality across the electron and hole
carrier densities, in the hot and QE states:

µe = +(kBT)F−1
1

[
π(h̄vF)

2

2(kBT)2 (n
0
e + nPG)

]
, (12a)

µh = −(kBT)F−1
1

[
π(h̄vF)

2

2(kBT)2 (n
0
h + nPG)

]
, (12b)

µe0 = +(kBT0)F−1
1

[
π(h̄vF)

2

2(kBT0)2 (n
0
e + nPG)

]
, (12c)

µh0 = −(kBT0)F−1
1

[
π(h̄vF)

2

2(kBT0)2 (n
0
h + nPG)

]
. (12d)

In these formulas, kB is the Boltzmann constant, vF ≈ c0/300 (c0
is the speed of light in vacuum) is the Fermi velocity of carriers
in graphene, F−1

1 is the inverse of the Fermi-Dirac integral of
first order [see Eq. (S11) in the Supplemental Document], and
n0

e/h are the electron/hole carrier densities at equilibrium.
The transient/pulsed-excitation solution of the six-equation

system of the GHEM [Eqs. (10-11) and (12a-d)] is done using
an ODE time-integration method, as discussed in Section A.
The static/CW solution, i.e., when the LHS of Eqs. (10-11) is
zero, involves a nonlinear equation-system solver. Refer to the
Supplemental Document, Section 6, for implementation details.

B. Calculating the Nonlinear Surface Conductivity
In order to compute the nonlinear surface conductivity of
graphene, we feed the GHEM with a static CW or a pulsed exci-
tation introduced through the ⟨Iabs⟩i/e terms in Eqs. (10)/(11),
respectively. In the ideal case of a uniform plane-like wave
propagating along a flat monolayer in the z-axis, the effective
absorbed intensity is simply

⟨Iabs⟩i/e(z, t) =
1
2

Re{σ
(1)
i/e (z, t)}|E∥(z, t)|2, (13)

where |E∥(z, t)| is the magnitude of the E-field component par-
allel to the graphene sheet, in that particular point in space
and time (z, t). In the case of a waveguide structure, one must
account for the overlap of the modal field profile (now a 2D
function in the cross section of the waveguide, xy plane) with
any graphene sheets [16, 34]. This spatial overlap can be quanti-
fied in the effective value for the E-field intensity in Eq. (9), i.e.,
|E|2eff = 2Z0 Ieff, resulting in

⟨Iabs⟩i/e(z, t) = Z0Re{σ
(1)
i/e (z, t)}P(z, t)

AG
eff

, (14)

where P(z, t) is the instantaneous power of the signal’s slowly
varying envelope at point-z along the waveguide. Note that
the model in [32] treats a zero-dimensional structure, i.e., a fo-
cused laser beam impinging normally on a graphene sheet, so
that ⟨Iabs⟩i/e is given by the Tinkham formula [52] which also
accounts for the dielectrics above/below the sheet.

With this excitation, the equation system can be solved
for its six underlying microscopic graphene quantities:
{ED

T , nPG, µe, µh, µe0 , µh0}, which can be static or time-
dependent, for CW or pulsed excitation, respectively. Note
that the electronic temperature of graphene carriers, T, can be
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considered as a dependent/implicit variable of the equation
system; it is computed from the Fermi-Dirac framework
formulas (refer to Supplemental Document, Section 2) that
relate it to the independent variables, i.e., the quasi-Fermi
levels and the plasma energy/carrier densities. Finally, the
triplet {T, µe, µh}, fully describing the microscopic properties of
graphene in the hot state, together with the operating frequency
ω, can be passed to the Kubo formulas for the calculation of
the complex intraband and interband conductivity terms, as
follows:

σ
(1)
i (ω, µe, µh, T) = σ0

i
πkBT

∫ ∞

0

E
h̄ω + iΓi(E)

×
[

cosh−2
(
E − µe

2kBT

)
+ cosh−2

(
E + µh
2kBT

)]
dE ,

(15)

and

σ
(1)
e (ω, µe, µh, T) = σ0

4i
π

∫ ∞

0

h̄ω + iΓe(E)
[h̄ω + iΓe(E)]2 − 4E2

×

 1

1 + exp
(
−E−µh

kBT

) − 1

1 + exp
(
E−µe
kBT

)
 dE ,

(16)

respectively, where Γi/e are the momentum scattering rates for
the intra/interband processes. In this model it is assumed that
the conductivity follows the parameters {T, µe, µh}, which can
be time dependent with fluctuations down to the 100 fs scale
as momentum relaxation lifetimes are typically in the order of
10 fs.

In this generalized form of the Kubo equations, we have as-
sumed arbitrary energy-dependence in Γi/e = Γi/e(E). Now,
in practice, while the interband rate is constant and negligibly
small (e.g., Γe = 0.5 meV), the energy-dependence and the mag-
nitude of the intraband rate is nontrivial and crucial for the
nonlinear response. Γi can be directly related to the quality of
the graphene sample and, specifically, to the density of charged
impurities, which, is in turn related to the sample’s carrier mo-
bility. In the following parts of this work we have adopted the
fitting for Γi(E) proposed in Eq. (19) of [32] with parameters
ζ = 4 and Eimp = 30 meV. Now, the intraband conductivity can
be calculated by the energy-integral in Eq. (15), which can be cast
in simpler forms [26] for constant Γi and/or equilibrium states
where µe ≡ µh = µ0. Note that the interband term cannot be cal-
culated directly by Eq. (16) due to a singularity in its integrand
at half-photon energy, E = h̄ω/2; this can fortunately be circum-
vented by a transformation involving a principal value integral
[53] as outlined in Section 3 of the Supplemental Document.

The final graphene photoconductivity, i.e., the irradiation-
induced change in its complex-valued surface conductivity with
respect to the equilibrium (low-power, linear) value, is given by:

∆σ
(1)
NL = σ

(1)
tot (ω, µe, µh, T)− σ

(1)
tot (ω, µ0, µ0, T0), (17)

where σ
(1)
tot = σ

(1)
i + σ

(1)
e from Eq. (15) and Eq. (16). Note that at

high-power illumination, T > T0 and µe ̸= µh ̸= µ0.

C. Indicative GHEM response
Concluding the presentation of the GHEM, we evaluate the total
nonlinear photoconductivity of graphene in the ideal case of a
plane-like wave of given intensity propagating along an infinite
flat monolayer. In this case, the photoconductivity that will be
calculated refers to a specific z-position along the sheet, where
the plane wave has the aforementioned intensity value and its
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Fig. 3. Static nonlinear surface conductivity predicted by the
GHEM as a function of incident intensity for a few equilibrium
chemical potential values. (a) Real part, (b) shift in imaginary
part, both normalized to σ0.

polarization is parallel to the sheet; naturally, the photoconduc-
tivity magnitude is attenuated as the wave propagates along the
sheet as part of it is absorbed.

In the results depicted in Fig. 3 and 4, for CW and pulsed
excitation, respectively, we have assumed λ0 = 1550 nm and
T0 = 300 K along with the values for τE , τrec and Γi/e mentioned
in the previous Sections. In both figures, different-color curves
correspond to different equilibrium chemical potentials of a
graphene monolayer (µ0), assumed in a range of values that can
be typically attained by electrostatic biasing [6] or gating [16].
Note that the sign of µ0 is irrelevant for the nonlinearity in this

GHEM, i.e., the exact same ∆σ
(1)
NL values are predicted for ±µ0,

owing to the symmetry of the charge carriers in graphene near
the point of the Dirac cone.

Starting from the real part of the static/CW nonlinear con-
ductivity, Fig. 3(a), we immediately notice the SA phenomenon:
When the intensity exceeds a threshold value, the real part drops
almost to zero, approximately following the phenomenologi-
cally anticipated 1/(1 + ρ) trend [21]. The value of the satura-
tion intensity, Isat, depends on µ0 and decreases as µ0 → h̄ω/2;
however, at half-photon energy and above the real-part vanishes
entirely. The refractive nonlinearity, Fig. 3(b), is captured by the
shift in Im{σ(1)} (compared to its linear/low-power illumina-
tion value), which is found to be self-focusing for µ0 < h̄ω/2,
defocusing close to h̄ω/2, and vanishing above that value. Ex-
ponentially increasing defocusing values are predicted for very
high intensities, exceeding 10 GW/cm2 (+40 dB in the horizontal
axis of the graphs).

The transient response for a Gaussian pulse of 1 ps full-width
half-maximum (FWHM) and 1 GW/cm2 peak intensity is para-
metrically studied, for a few values of µ0, in Fig. 4. The main
results can be intuitively extracted from the CW response: In
panel (a) we note the deep SA for µ0 = 0.2-0.4 eV, while in
panel (b) we note the self/de-focusing trends. The important
conclusion stemming from this transient analysis is that the ex-
ponential decay of the nonlinear conductivity to its equilibrium
value happens in the τrec time span, i.e., correlates mostly with
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the excitation pulse.

the photogenerated carrier density (interband absorption mech-
anism), as found in [17], rather than the carrier plasma heating
(intraband absorption mechanism); the latter mostly contributes
to small fluctuations of the imaginary part near the pulse peak.

4. STATIC/CW RESPONSE

A. Graphene Waveguide Optimization

Starting from waveguide optimization, it can be easily inferred
that the optimization of the 2D-material nonlinear parameters
of the NLSE (minimal AG

eff and maximal ςNLSE) coincides with
the maximization of the linear attenuation coefficient, Eq. (4),
which ensures maximal mode-graphene overlap. The compar-
ison of the field-profiles in Fig. 2 and the extracted values in
Table 1 highlights the Si-slot waveguide as the best waveguide
archetype: This is due to the high index-contrast offered by the
Si/air interface and the spatial overlap of graphene with the
horizontally-polarized (quasi-TE) mode supported when the
slot is sufficiently narrow. As waveguide optimization is not
the central goal of this work, we adopt the parameters used in
[34], i.e., Si-rails of 180 nm×360 nm (thickness×width) each,
spaced by a 40 nm air-slot, on a silica substrate, covered by a
graphene monolayer. Further optimization of this archetype
can be accomplished by adding more (uncoupled) graphene
layers or reducing the air-slot width and tweaking the Si-rail
dimensions, as performed in Fig. 4 of [48]; nevertheless we re-
frain from selecting multiple graphene sheets or exaggerated
dimensions, to stay close to realistic devices [40]. Note that in
many fabricated devices the graphene sheets are not in contact
with other semiconductors (e.g. bulk ones like silicon ridges, or
other graphene sheets), but it is separated by a few-nm thickness
insulating dielectric, e.g., SiO2 in [17] or Al2O3 in [6]. This is
because materials in physical contact with graphene affect its
electrodynamic properties [32] and must be carefully accounted
for. Finally, we stress that TE (horizontal) mode polarization
is generally preferable to TM (vertical) in terms of light-matter
interaction in integrated waveguides where the nonlinear 2D ma-
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terial is very simply incorporated, i.e., as an infinite plane sheet
(in the horizontal plane, xz with reference to Fig. 1) overlaying
the underlying structure. TM polarization can alternatively be
used, together with TE or instead of it, but this requires for engi-
neering of the waveguide and/or potentially more complicated
graphene-deposition technology; for example the ‘graphene
wrapped’ Si-rib of Fig. 2(d) [6] exhibits low AG

eff and high ςNLSE
for both TE and TM modes.

Moving on to the optimization of the graphene parameters,
we mainly focus on the optimal choice of equilibrium chemical
potential (µ0) with respect to the peak-power of the illumination.
The CW saturation-curves in Fig. 3 are helpful in this regard,
but here we extend the parametric analysis targeted to either
absorptive or refractive nonlinear functionalities. As SA is the
dominant absorptive nonlinearity one aims for minimal satura-
tion intensity Isat and/or highest contrast (difference) between
the losses at a low (reference) and a high intensity. These regions
can be evaluated by the normalized Re{σ(1)} in Fig. 5(a): Isat
decreases as µ0 → h̄ω/2 = 0.4 eV for 1550 nm operation, even
down to 1 MW/cm2, while the loss-contrast is somewhat lower
in the µ0 = 0.1-0.2 eV range. Now, for optimizing refractive non-
linearity from graphene, one aims at a high |Im{∆σ(1)}| together
with a low Re{σ(1)}. These regions are identified in Fig. 5(b),
where different colors are used for focusing and de-focusing
refraction: There appears to be an optimal focusing-refraction
combination near 0.24 eV and 1 GW/cm2, while a defocusing
region is accessible near half-photon energy (0.4 eV) and at very
high powers, exceeding 10 GW/cm2. The sign of Im{∆σ(1)}
should be compared to the sign of group-velocity dispersion
parameter β2 (normal or anomalous regime), as it is key to some
nonlinear phenomena like bright/dark soliton formation [43].

B. Nonlinear Self-Consistent Method

In order to validate the effective linear approximation of Eq. (6)
[between the NLSE term δGNL and the GHEM photoconductivity

∆σ
(1)
NL] and Eq. (9) [between the envelope power and the Ieff fed
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to the GHEM], we use our FEM eigenmode solver to implement
a nonlinear self-consistent method (NLSCM) for the calculation
of the attenuation constant and the induced dephasing in the
high-power CW illumination.

The NLSCM algorithm consists of launching a given power
P (in Watt) into the desired waveguide mode and iteratively
re-calculating the eigenmode using the FEM solver until conver-
gence in the eigenvalue (the complex effective index) is achieved;
in each iteration, the spatial profile of graphene conductivity
σ(1)(x, y) is adjusted by the locally-induced photoconductiv-
ity using the CW GHEM curves (e.g., as in Fig. 3) to map
the |Ẽ∥(x, y)| of the mode from the previous iteration into the

∆σ
(1)
NL(x, y) to be used in the following one:

σ
(1)
j+1(x, y) = σ

(1)
lin (x, y) + ∆σ

(1)
NL

{
|Ẽ∥,j(x, y)|

}
(18)

where j is the NLSCM iteration counter. Note that the modal
E-field amplitude after each iteration is re-normalized to input
power P and that the local intensity used for look-up into the
GHEM is computed by I(x, y) = |Ẽ∥(x, y)|2/2Z0. The local
shift in the conductivity can be rather large for highly-confining
waveguides like the Si-slot, as depicted by the final/converged
spatial distribution of σ(1)(x) in Fig. 6, for a few values of
PNLSCM = P; notice how graphene’s Re{σ(1)} is practically zero
over the slot region for 100 mW excitation.

The NLSCM-converged P-dependent complex effective
modal index can now be converted into the complex δGNL of the
NLSE Eq. (1) as

δGNL =
1
2

∆α + i∆β = ik0

[
neff,NL(P)− neff,lin

]
, (19)

where k0 = 2π/λ0. In Fig. 7 we compare the NLSCM results of
Eq. (19) for the Si-slot waveguide to the effective linear approx-

imation of Eq. (6), i.e., δGNL = ςNLSE∆σ
(1)
NL/σ0, where ∆σ

(1)
NL is
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dashed curves) values for the nonlinearity-induced (a) attenu-
ation constant and (b) dephasing, for the Si-slot waveguide of
Fig. 2(c). Different colors correspond to different equilibrium
µ0.

power-dependent as in Fig. 3 for Ieff → P/AG
eff. We find good

qualitative agreement noting, however, that the effective approx-
imation is optimistic, by a few dB in Isat [panel (a)] and by 20-30%
in ∆β for mid-range power levels [panel (b)]. Nevertheless, for
the chemical potential and power levels targeted (µ0 ≈ 0.3 eV
and P ≈ +30 dBm), the agreement is also quantitatively favor-
able. Consequently, for our NLSE/SSFM scheme, we will use
the much simpler effective approximation of a constant ςNLSE,
which can provide valuable insight at the expense of reduced
accuracy, rather than a look-up/fit to the full-wave NLSCM rela-
tion {µ0, P = |A|2} → {∆α, ∆β} for each point in (z, t). Finally,
we should point out that the two methods converge much better
for the lower confinement waveguides, e.g., those in Fig. 2(a-b),
as presented in Section 4, Fig. S1 of the Supplemental Document.

5. PULSED RESPONSE

Having completed the CW analysis, we will now present a num-
ber of pulsed applications of interest to ultrafast integrated pho-
tonics that manifest due to graphene nonlinearity in straight
waveguide segments. In all the examples shown in this section,
we employ the single-channel NLSE of Eq. (1), with parame-
ters calculated for the Si-slot waveguide of Fig. 2(c) [34] for
λ0 = 1550 nm; the waveguide dispersion parameters relevant to
this study are β2 = +9.84 ps2/m and β3 = −0.03 ps3/m. The
GHEM presented in Section 3, coupled to the NLSE through the
optical pulse power, is used to extract the photoconductivity

term ∆σ
(1)
NL(z, t) along the propagation, which in turn nonlin-

early distorts the output pulse envelope. We mainly study the
effect of graphene’s equilibrium chemical potential (µ0) and
the peak-power of the pulses (Ppeak) on each application. An
overview of the NLSE/GHEM algorithm implementation and
the major associated quantities can be found in Section 6 of the
Supplemental Document.
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Fig. 8. Improvement of the ER of an NRZ bitstream propa-
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input ER is 6 dB and the rate is 300 Gbps. Dotted curves corre-
spond to the input pulse-streams.

A. Self-absorption modulation

The saturable absorption effect, evidenced by the GHEM for
µ0 < h̄ω/2 in subsection C, leads to a self-absorption modula-
tion (SAM) which can be used to passively improve the extinc-
tion ratio (ER) of an amplitude modulated signal. Low ER values
can be produced by semiconductor optical amplifiers or other
highly-nonlinear amplifiers. The idea behind the SA-enabled
ER-improvement is that the high-power bits (‘1’) will experience
very little losses along the waveguide (as their power is enough
to saturate the Re{σ(1)} of graphene), while the low-power bits
(‘0’) will experience much higher losses. As an indicative sce-
nario, we consider a 300 Gbps NRZ-modulated stream of 16
bits with a poor extinction ratio of 6 dB, launched into a 100 µm
segment of a Si-slot waveguide. The µ0 and Ppeak parametric
results presented in Fig. 8(a) and (b), respectively, show the
output pulse-streams from where we can notice that the ER
improvement vs. insertion losses (IL) compromise is best for
µ0 ≈ 0.3 ± 0.1 eV and for Ppeak ≈50-200 mW. Lower (or higher)
values of µ0 lead to high IL (or negligible ER improvement).
Ppeak values higher (or lower) than 100 mW suffer from low ER
improvement as losses are quenched for both ‘1’ and ‘0’ bits (or
high IL).

Finally, we note a mild distortion of the pulses due to the
300 Gbps rate leading to a rise/fall time that is comparable to
intraband energy-relaxation lifetime (τE = 1 ps) but smaller
than the interband recombination lifetime (τrec = 10 ps). Pulse
streams at rates lower than τ−1

rec (100 Gbps) will experience much
less distortion, meaning that the CW saturation curves, e.g.,
Fig. 3, can be used as a ‘look-up’ instead of the NLSE. Neverthe-
less, our rigorous calculation of the GHEM-induced distortion
on the pulse-stream can be valuable for digital communication
system analysis, i.e., extracting eye pattern metrics.
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Fig. 9. Output (a) shape and (b) spectrum of a τFWHP = 1 ps
and Ppeak = 1 W unchirped Gaussian pulse propagated along
500 µm of a graphene-overlaid Si-slot waveguide [inset in
panel (a)], for three equilibrium chemical potential values.
Panel (b) spectra are normalized to depict the spectral broad-
ening.

B. Pulse Shaping and Spectral Broadening
High-Ppeak pulses benefit from reduced attenuation thanks to
the deep SA which is, however, accompanied by nonlinear re-
fraction in a form approximately analogous to the self-phase
modulation (SPM) produced by the instantaneous Kerr effect
in bulk nonlinear media. The SPM is equivalent to a frequency
chirping, i.e., a change in the instantaneous frequency of the
pulse along its duration. The combination of SPM and disper-
sion can give rise to interesting nonlinear phenomena like spec-
tral broadening and soliton formation [43]. In order to probe
this class of refractive nonlinear effects, we launch ps-duration
pulses into a 500 µm segment of a Si-slot waveguide and study
the effect of µ0 and Ppeak. The input pulse envelope is in all cases
Gaussian shaped:

A(zin, t) =
√

Ppeak exp
[
− 1

2
(1 + iC)

(
t

τ0

)2]
, (20)

where C is the linear chirp parameter, τ0 = τFWHP/1.6651, and
τFWHP is the pulse duration (full-width half-maximum). In this
subsection we use C = 0 (no chirping) and τFWHP = 1 ps.

Figure 9 depicts the effect of µ0 on the output pulse shape,
|A(t)|2, and normalized spectrum, |Ãn( f )|2; in this case Ppeak =
1 W so that the pulse energy is approximately 1 pJ. From panel
(a) we notice three interesting features as µ0 is decreased: firstly
that the pulse is more attenuated, secondly that the leading edge
of the pulse becomes steeper, and, thirdly, that the temporal
peaking of the pulse is slightly delayed. Moreover, from panel
(b), we note that the spectrum of the pulse is broadened as µ0
is decreased; for the µ0 = 0.24 eV case we measure a tripling of
the spectral width, i.e., B f ≈ 3, when measured at half-power
[the dotted line in panel (b)].

In order to find an optimum compromise between the IL
and the B f , we propose a figure-of-merit FOM = B f × ILlin,
where ILlin is the power-transmission coefficient in a linear scale.
We parametrically scan µ0 and Ppeak depicting the performance
metrics in the heatmaps of Fig. 10: From panel (a) we observe
that IL drops as µ0 approaches h̄ω/2 = 0.4 eV or when the Ppeak
exceeds a threshold of 30 to 40 dBm (1 to 10 W). From panel
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(b) we observe that the B f is largest in the above mentioned
power-range and just below the IL = −10 dB threshold. Finally,
from panel (c) we identify an interesting region between 0.4 and
0.45 eV and above 30 dBm which leads to a fair compromise of
IL > −3 dB and B f ≈ 2, leading to FOM > 1.

The effect of chirping of the input pulse is parametrically
investigated in Fig. S2 of the Supplemental Document, from
where we note that a value of C = −0.5 leads to maximal B f
at µ0 = 0.45 eV. This finding is in-line with the observations
in the experiment of [17] where negative chirping led to much
higher spectral broadening compared to equivalent positive
chirping, owing to the negative (defocusing) nonlinear refraction
manifesting at µ0 = 0.45 eV, cf. Fig. 5.

C. Self Steepening and Pulse Breaking
Revisiting the 0.24 eV output pulse in Fig. 9, we note that the
deep SA at the leading edge of the pulse gives rise to a self-
steepening. For sufficiently higher powers and/or propagation
lengths this will eventually lead to an optical shock formation
[43]. In turn, the shock leads to a breaking of the pulse in time
and, in combination with the nonlinear chirping, expels quasi-
soliton(s) and/or dispersive waves, similar to free-carrier effects
in silicon waveguides [44].

To showcase this phenomenon, we increase the pulse peak
power to Ppeak = 8 W and lower its duration to τFWHP = 125 fs
to maintain the pulse energy at approximately 1 pJ. The lowering
of the pulse duration makes the waveguide length comparable
to the group-velocity dispersion length, and enhances the effect.
The pulse and spectrum evolution along the waveguide for a
µ0 = 0.2 eV graphene sheet is depicted in Fig. 11. Notice how
the shock is formed at about 100 µm and immediately a soliton-
like fragment (with higher peak-power and shorter duration
compared to the input pulse) is expelled; alongside that, the
spectrum develops a second peak blueshifted by approximately
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Fig. 11. Deeply sub-ps pulses experience an optical shock at
the leading edge which develops into a pulse-breaking. (a)
Shape and (b) spectrum of a 125 fs Gaussian pulse of 8 W peak
power as it propagates along 500 µm of a 0.2 eV graphene-
overlaid Si-slot waveguide.
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Fig. 12. Effect of equilibrium chemical potential µ0 on pulse-
breaking, for Ppeak = 5 W. Both output pulse (a) shape and (b)
spectrum have been normalized to the same energy level for
comparison, noting that |µ0| < 0.3 eV values correspond to
very high IL.

20 THz.
In order to better understand the dependence of this phe-

nomenon on the GHEM parameters, we perform the simulation
for various µ0 values in 0.15-0.5 eV and for Ppeak = 5 W. The
output pulses and spectra are depicted in Fig. 12, which have all
been normalized (subscript “n”) to the same energy for ease of
comparison; we remind that µ0 < 0.3 eV cases lead to IL higher
than 20 dB for this peak-power. For instance the 0.2 eV case
led to IL ≈ −6 dB in Fig. 11 (Ppeak = 8 W) but IL < −30 dB
here (Ppeak = 5 W); this evidences the sensitivity of the output
pulse shape on the input peak power, which is another signature
feature of solitons. From the results in Fig. 12 we highlight the
µ0 = 0.3 and 0.35 eV cases which lead to a split-pulse shape
[panel (a)] and a spectral broadening factor B f ≈ 4 [panel (b)],
respectively.

Finally, more simulation results for parametric studies of
the peak-power and input chirping, at µ0 = 0.35 eV, can be
found in Fig. S3 and S4 of the Supplemental Document. These
further showcase the sensitivity of the quasi-solitons to these
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parameters.

6. SUMMARY AND CONCLUSIONS

An electrodynamic graphene hot electron model (GHEM) was
used to physically relate the optical power intensity and
graphene’s tunable electro-optical properties to the induced
nonlinear self-acting transient photoconductivity. This model
was adapted to the study of ultrafast (sub-ps) optical pulse
propagation along highly-confining integrated photonic waveg-
uides in terms of the NLSE framework. Parameters to effec-
tively abstract the nonlinear properties of the waveguide mode
for use in the NLSE were proposed and corroborated by full-
wave self-consistent simulations in the static/CW regime. The
NLSE-GHEM was used to simulate a number of pulsed appli-
cations (extinction-ratio improvement, pulse-shaping/spectral-
broadening, and pulse-breaking leading to quasi-soliton for-
mation) which showcase its validity and potential in a unified
physically consistent modeling of both absorptive and refractive
high-power nonlinearities in graphene. Our results are in good
qualitative and quantitative agreement with recent experiments
and can be used for the analysis and/or design of nonlinear
graphene-comprising waveguide-based devices. The GHEM is
also applicable to other bands besides the NIR, from the visible
down to sub-THz, while the NLSE/SSFM framework can be
used for any nonlinear 2D material, provided that a microscopic
model (analogous to the GHEM) is used to couple the induced
photoconductivity to the optical power.
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1. DERIVATION OF THE GRAPHENE-WAVEGUIDE EFFECTIVE AREA

The magnitude of local graphene photoconductivity ∆σ
(1)
NL(x, y) inside the waveguide cross section

(xy plane) depends on the local intensity of the propagating field, I(x, y) in [W/m2], which is
in turn quadratically proportional to the E-field magnitude, |Ẽ∥(x, y)|2 in [(V/m)2]; only the
E-field component parallel to the 2D-material/graphene sheet interacts with it. Adopting the
nomenclature of Section 2.B of the main manuscript, we can write the local field in the waveguide
as

E(x, y, z, t) = ẽ(ω0; x, y)
|A(z, t)|√

Pn
eiβ0z, (S1)

where ẽ(ω0; x, y) is the eigenmode cross section profile at operating frequency ω0 (omitted
henceforth for brevity), β0 is the complex phase constant of the mode, A(z, t) is the pulse envelope
(in [W1/2] units), and Pn is a modal power-normalization constant (in [W] units). Note that
Eq. (S1) applies also for the magnetic field, H(x, y, z, t) so that the power-flow equals |A(z, t)|2.

The essence of the nonlinear Schrödinger equation (NLSE) formulation is to abstract any profile
distribution in the waveguide cross-section in effective properties, characteristic of the given
eigenmode. For nonlinear 2D materials, we can define an operator that calculates the effective
(cross section profile averaged) value of quantity F(x, y, z, t) as

Feff(z, t) = ⟨F(x, y, z, t)⟩ =
∫

G F(x, y, z, t)|ẽ∥(x, y)|2dℓ∫
G |ẽ∥(x, y)|2dℓ

, (S2)

where integration takes place along the trace of graphene (or any 2D material) sheets in the
cross-section and the normalization/weighting function is |ẽ∥(x, y)|2, as nonlinear quantities
scale with intensity component parallel to the sheets. Applying Eq. (S2) to the full electric field
|E∥(x, y, z, t)|2 produces the effective value of the E-field intensity that interacts with graphene:

|E∥|2eff(z, t) = ⟨|E∥(x, y, z, t)|2⟩ =
∫

G |E∥(x, y, z, t)|2|ẽ∥(x, y)|2dℓ∫
G |ẽ∥(x, y)|2dℓ

. (S3)

Replacing the scaling of Eq. (S1) into Eq. (S3) we arrive at

|E∥|2eff(z, t) =
|A(z, t)|2

Pn

∫
G |ẽ∥(x, y)|4dℓ∫
G |ẽ∥(x, y)|2dℓ

, (S4)

while the effective intensity on graphene (or the 2D material) is related to the effective electric
field squared as

Ieff(z, t) =
1

2Z0
|Ẽ∥|2eff(z, t) =

|A(z, t)|2

AG
eff

. (S5)



Finally, eliminating the (z, t)-dependent quantities between Eq. (S4) and Eq. (S5) we arrive at the
effective area quantifying the cross-sectional overlap of the modal profile with graphene (or any
nonlinear 2D material)

AG
eff =

2Z0Pn

⟨ẽ∥(x, y)|2⟩ = 2Z0Pn

∫
G |ẽ∥(x, y)|2dℓ∫
G |ẽ∥(x, y)|4dℓ

. (S6)

Note that we have assumed the I = |E∥|2/2Z0 relation between the intensity and E-field on the
2D material sheet, i.e., with reference to the free-space impedance Z0. This was done for simplicity
and given that a refractive index cannot be formally appointed to a zero-thickness sheet material.

2. FERMI-DIRAC FRAMEWORK

The graphene hot-electron model (GHEM) adopted from [1] relies on distinct quasi-Fermi levels
(or chemical potentials) for the electron and hole plasmas, µe and µh, respectively. In general it
holds that µe ̸= µh, and the difference becomes more pronounced as the system is pushed farther
from thermal equilibrium especially by photogeneration (interband absorption). Both plasmas
have the same carrier temperature, T, which can (far) surpass the lattice temperature T0, if even
for a sub-ps timespan. In the Fermi-Dirac statistical framework, the distribution function for
electrons/holes is given by

fe/h(E ; µe/h, T) =
H(±E)

1 + exp
(
± E−µe/h

kBT

) , (S7)

where kB is the Boltzmann constant and H(x) is the step function (H = 1 for x > 0, else H = 0).
The solid-state parameters on which the GHEM finally relies are the carrier surface densities

(ne,h in [1/m2]) and the plasma-energy surface densities (ED
e,h in [J/m2]). Note that, like the

distribution functions, these are distinct for electrons (e-subscript) and holes (h-subscript) and
depend solely on the corresponding chemical potential (µe,h) and the common carrier temperature.
The formulas for the carrier and energy densities are derived from energy integrals of fe/h(E)
times the density of states (DOS) which, for graphene near the tip of the Dirac cone, takes the
linear form

NDOS(E) =
2

π(vF h̄)2 |E |, (S8)

where h̄ is the reduced Plank constant (h̄ = h/2π) and vF ≈ c0/300 is the Fermi velocity in
graphene (c0 is the speed of light in vacuum); formally, vF = α0γ0

√
3/2h̄ ≈ 0.874 × 106 m/s,

for a lattice constant of a0 = 2.46 Å and a nearest-neighbour coupling energy of γ0 = 2.7 eV
[2, 3]. The quantities {n, ED} are given by the following expressions: n =

∫ ∞
0 NDOS f dE and

ED =
∫ ∞

0 NDOS fEdE , resulting in:

ne/h(µe/h, T) =
2(kBT)2

π(h̄vF)2 F1

(
±µe/h

kBT

)
, (S9)

ED
e/h(µe/h, T) =

2(kBT)3

π(h̄vF)2 F2

(
±µe/h

kBT

)
. (S10)

Note the symmetry in these formulas for electrons and holes, with an attention to the sign used
for electrons (+) and holes (−). The function Fm(x) is the Fermi-Dirac integral (FDI) of order-m
defined as

Fm(x) =
∫ ∞

0

um

1 + exp (u − x)
du. (S11)

The total carrier and energy densities at a given state (e.g., at thermal equilibrium or quasi-
equilibrium) are given by the sum of the electron and hole terms, nT = ne + nh and ED

T =

ED
e + ED

h , respectively.
Finally, we stress that Eq. (S9) and Eq. (S10) are (numerically) invertible, which means that

knowing any two variables in the {µ, T, n} or {µ, T, ED} set, we can calculate the third variable.
In the GHEM employed in this work, we specifically require the roots of Eq. (S9) with respect
to the carrier temperature T when µe/h and the corresponding ne/h = n0

e/h + nPG are known, as
well as its inversion for formulating Eqs. (12) of the main manuscript,

µe/h = ±(kBT)F−1
1

[
π(h̄vF)

2

2(kBT)2 ne/h

]
, (S12)

2



where F−1
1 is the inverse function of Eq. (S11) for m = 1. Note that asymptotic expressions can

simplify the numerical inversion in extreme cases, namely F1(x) = x2/2 and F1(x) = ex, when
x ≫ 1 and x → 0, respectively. Finally, fittings exist for the inverted calculation, i.e., extracting
{µ, T} from {ne, nh}, such as the one proposed in [4] and its supporting information, applicable
in the equilibrium case, µe ≡ µh = µ0.

3. GRAPHENE INTERBAND SURFACE CONDUCTIVITY

The integral in the Kubo formula for the interband contribution to the surface conductivity,

σ
(1)
e (ω, µe, µh, T) = σ0

4i
π

∫ ∞

0

h̄ω + iΓe(E)
[h̄ω + iΓe(E)]2 − 4E2

×

 1

1 + exp
(
−E−µh

kBT

) − 1

1 + exp
(
E−µe
kBT

)
 dE ,

(S13)

cannot be analytically solved, even though in most practical cases the interband momentum
relaxation rate is energy independent and it can even be neglected, Γe → 0, under the condition
Γe ≪ kBT0 ≈ 26 meV (at room temperature); in most practical cases Γe < 1 meV (τe = h̄/Γe >
1 ps) [5]. This complication is due to the singularity exhibited by the integrand at half-photon
energy, E = h̄ω/2, which can fortunately be circumvented by a transformation involving a
principal value integral. This procedure has been outlined in [6] for the equilibrium case and, for
the out-of-equilibrium case studied here, µe ̸= µh, it can be extended as follows: We first define
the auxiliary function

G(E ; µe, µh, T) =
sinh

(
2E−µe+µh

2kBT

)
cosh

(
µh+µe
2kBT

)
+ cosh

(
2E−µe+µh

2kBT

) (S14)

which can be used in compactly rewriting Eq. (S13) as

σ
(1)
e = σ0

4iΩ
π

∫ ∞

0

G(E)
Ω2 − 4E2 dE , (S15)

where Ω = h̄ω + iΓe (the scattering rate is assumed energy independent) and the singularity at
Ω = 2E is evident in the denominator. Adding and subtracting the term G(Ω/2) in the nominator
of the integrand in Eq. (S15), we get one singularity-free term [from the −G(Ω/2) + G(E) terms],
that can be straightforwardly numerically computed, and one term that requires a principal-
value integral (PVI) [from the +G(Ω/2) term]. Now, as the integrand function [proportional to
1/(Ω2 − 4E2)] is anti-symmetric around the singularity, the PVI reduces to the proportionality
constant times iπ. The resulting expression for the numerically integrable interband conductivity
is:

σ
(1)
e = σ0

[
G(Ω/2) +

4iΩ
π

∫ ∞

0

G(E)− G(Ω/2)
Ω2 − 4E2 dE

]
. (S16)

Assuming Γe = 0, Eq. (S16) reveals that the real and imaginary parts of the interband conduc-
tivity are solely defined by the first and second terms, respectively. Note that the real part can
acquire negative values (‘gain’) owing to population inversion in strongly non-equilibrium states
[1], i.e., when ∆µ(e−h) > h̄ω; nevertheless, we restrict our study the cases where this regime is
not entered, ensuring always that the real part of the total conductivity is positive.

4. NONLINEAR SELF-CONSISTENT METHOD

Graphene-comprising waveguides with lower mode confinement exhibit much better conver-
gence in the nonlinearity-induced change both in attenuation coefficient and phase constant, when
computed with the NLSCM (nonlinear self-consistent method) and when using the effective linear

approximation δGNL = ςNLSE∆σ
(1)
NL/σ0, where ∆σ

(1)
NL is intensity dependent on Ieff = P/AG

eff, P
being the CW power launched into the waveguide mode.

Compared to the highly-confining Si-slot waveguide presented in Fig. 7 of Section 4.B of the
main manuscript, the SNOI (silicon nitride on insulator) waveguides from [7, 8] show almost
identical results when employing both approaches [NLSCM or linear effective approximation of
Eq. (6)], Fig. S1. However, note also that a much higher power (+10 dB or more) is required to
saturate the losses and that the induced nonlinear refraction ∆β is lower (5 times).
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Fig. S1. Comparison between the NLSCM-calculated vs. effective-approximation predicted
values for the nonlinearity-induced (a1-a2) attenuation constant and (b1-b2) dephasing, for the
vertical SNOI slot waveguide [7] (left panels) and for the buried SiN ridge waveguide [8] (right
panels).

5. PULSED RESPONSE

A. Pulse Shaping and Spectral Broadening
We parametrically vary the chirp of the input pulses, for a few equilibrium chemical potential
values near the µ0 = 0.45 eV point identified in the main manuscript, Fig. 10(c). In Fig. S2 we can
see that chirping of the input pulse has an important effect on the spectral broadening factor B f ,
which is also reflected on the FOM, with a value of C = −0.5 being the best option.
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Fig. S2. Chirping of the input Gaussian pulse can significantly affect (a) the spectral broaden-
ing factor B f and (b) the overall FOM = B f × ILlin. The insertion losses (IL) only depend on the
equilibrium chemical potential value, given in the legend in dB units. Pulse peak power is 1 W,
full-width half-power is 1 ps, and Si-slot waveguide length is 0.5 mm.

B. Self Steepening and Pulse Breaking
The effect of peak-power and chirping of the input 125 fs pulse are parameterically studied here
using the NLSE-GHEM. The Si-slot waveguide length is 0.5 mm (500 µm) and is covered by a
graphene monolayer with an equilibrium chemical potential of µ0 = 0.35 eV.
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In Fig. S3 we note how only a narrow input peak-power value range, e.g., close to Ppeak = 5 W,
produces a pronounced quasi-soliton feature (higher peak and shorter duration) in the output
pulse. Lower or higher power values lead to similar but less pronounced features.
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Fig. S3. Effect of pulse peak-power Ppeak on pulse-breaking, for µ0 = 0.35 eV. Both pulse (a)
shape and (b) spectrum have been normalized to the same energy level for comparison, noting
that Ppeak < 5 W values correspond to very high IL.

From Fig. S4 we can infer that changes in the input pulse chirp can displace the peak of the
output-pulse spectrum by almost 10 THz.
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Fig. S4. Effect of chirping on pulse-breaking, for Ppeak = 5 W and µ0 = 0.35 eV. Both pulse (a)
shape and (b) spectrum have been normalized to the same energy for comparison.

6. OVERVIEW OF THE NLSE/GHEM ALGORITHM IMPLEMENTATION

In order to replicate the results presented in this paper the following three modules are needed:
• Firstly, a waveguide mode solver to extract the modal constants/coefficients of the NLSE.

This is typically used only once for each waveguide type and operating wavelength. Iter-
ative usage of the mode solver is required only for the nonlinear self-consistent method
(NLSCM), used here to validate the simplified model adopted. Our mode solver is based
on the finite-element method and was custom-built in MATLAB [9].
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Symbol Units Description Calculated with...

A(t) W0.5 Complex optical pulse envelope (retarded-time) User-defined

neff . Complex effective mode index (neff = β0/k0) Mode solver

α 1/m Linear modal power-attenuation Mode solver

βm sm/m Dispersion coefficient (m ≥ 2) Mode solver

γNL 1/m/W Complex third-order/Kerr nonlinear coefficient Mode solver

ςNLSE 1/m Photoconductivity scaling factor Mode solver

AG
eff m2 Effective area for mode-graphene overlap Mode solver

µ0 J (or eV) Equilibrium chemical potential of graphene User-defined

τE s Intraband energy relaxation lifetime User-defined

τrec s Carrier recombination lifetime User-defined

Γi(E) J (or eV) Graphene intraband momentum scattering rate User-defined

µe/h(t) J (or eV) Transient chemical potentials for electrons/holes GHEM

µe0/h0 (t) J (or eV) Transient quasi-equilibrium chemical potentials GHEM

nPG(t) 1/m2 Transient photo-generated carrier density GHEM

ED
T (t) J/m2 Transient total plasma energy density GHEM

T(t) K Transient hot-carrier temperature Fermi-Dirac

ne/h(t) 1/m2 Transient carrier densities Fermi-Dirac

σ
(1)
i/e (t) S Transient intra/interband conductivity (complex) Kubo formulas

∆σ
(1)
NL(t) S Transient graphene photoconductivity (complex) Kubo formulas

Table S1. Summary of the major parameters and coefficients underlying the NLSE/GHEM
method developed in this work. The symbols, units, and brief description/usage is also given.

• Secondly, an implementation of the transient solution to the GHEM equation system,
i.e., a ‘time-integrator‘. In essence, for a given optical pulse this calculates the transient
photoconductivity, which is a nonlinear/time-domain term in the NLSE. We used MATLAB
to solve the equation system in the transient/pulsed and static regime1. This work focuses
mostly on the transient solution, to study the dynamics of the system, but the static response
was also needed to extract the maps that helped to identify the optimal graphene-sheet
configurations (e.g. Fig. 5 of the main manuscript).

• Thirdly, an implementation of the SSFM algorithm to solve the NLSE, i.e., a ‘step-propagator’
that slides the input pulse envelope along the nonlinear waveguide and thus calculates
the output (nonlinearity-distorted) pulse envelope. This algorithm in described near the
end of subsection 2.2 of the main manuscript, with six steps. Note that the ‘time-integrator’
described in the previous module is used (once) in each step of the SSFM. We implemented
the SSFM in MATLAB, making use of PARFOR for efficient parametric sweeps.

The major parameters and variables appearing in this work, and their usage and means of
calculation, are listed in Table S1. The GHEM equation system and Kubo formulas are given in
Section 3.1 and 3.2 of the main manuscript, respectively. The Fermi-Dirac formulas are given in
Section 2 of this document.

1The GHEM involves multiple differential and algebraic equations (DAEs), so it forms a relatively stiff ODE system with a
singular mass matrix. In the transient regime, we solved it using MATLAB’s ODE15S which is a variable-step, variable-order
(VSVO) solver based on the numerical differentiation formulas (NDFs) of orders 1 to 5. In the static regime, we used standard
root-finding algorithms implemented in MATLAB’s FSOLVE (e.g. trust-region Powell’s “dog leg” method); normalization of
the equations and educated starting guesses are recommended to ease the numerical algorithm convergence.
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