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A strict mathematical framework combining perturbation theory and temporal coupled-mode theory is
developed to model graphene-induced saturable absorption in graphene-enhanced nanophotonic resonators. To
allow for loss saturation in graphene, a power-dependent model of its surface conductivity is carefully introduced,
based on the underlying physics. The framework is then cautiously unfolded to capture the two-dimensional
nature of graphene and its interaction with the electromagnetic mode, additionally allowing one to incorporate
any bulk or sheet material that is subject to saturable loss, together with other nonlinear effects. Both exact and
approximative approaches are introduced, revealing the capabilities of the proposed framework to address the
effect of saturable absorption. A graphene-enhanced silicon slab ring resonator is examined using the developed
framework, uncovering its excellent accuracy and its capability to downgrade the computational complexity of a
full-wave nonlinear simulation to a phenomenological but physically definitive differential equation. The potential
of the resonant structure to act as an optically addressed switching element is being demonstrated, exposing high
extinction ratio and low power requirements. Finally, it is illustrated how the framework is capable of capturing
the rich dynamics of a resonant system that may additionally exhibit Kerr- and/or free-carrier-induced optical
bistability and self-pulsation.
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I. INTRODUCTION

Graphene has attracted substantial interest in the past decade
due to its unique thermal, mechanical, electrical, and optical
properties [1]. Especially for photonic applications, graphene
features a vast mixture of appealing characteristics such as
broadband spectral response, extensive tunability, relatively
low resistive losses, and high nonlinear response [2]. The
graphene growth using chemical vapor deposition (CVD)
combined with the mature photonic integration technology
led to the development of numerous electrically controlled,
guided-wave applications in the near-infrared (NIR) optical
regime [3–6], while the possibility for practical plasmonic
devices based on graphene has also been explored [7].

Almost concurrently several groups have started to explore
nonlinear properties associated with graphene. Early theoret-
ical works indicated that graphene exhibits a strong third-
order nonlinear response (Kerr effect) [8] and non-negligible
nonlinear losses owing to the two-photon absorption process
[9]. As a consequence, a multitude of functional nonlinear
devices have been proposed and computationally analyzed
[10–13], all treating graphene nonlinearities as a small per-
turbation of its linear properties. Recently, it has experimen-
tally been verified through independent measurements that
graphene indeed exhibits a strong nonlinearity of Kerr type
[14–16], upholding earlier experiments on four-wave mixing
with graphene-enhanced photonic resonators [17,18].

Apart from the aforementioned nonlinearities, the intensity
dependent quench of linear losses [i.e., saturable absorption

*cthomasa@ece.auth.gr

(SA)] has so far given the most promising functional de-
vices that have been theoretically studied and experimentally
demonstrated. SA in graphene has a low saturation intensity
and a broadband response, spanning from millimeter waves
[19] to the NIR [20], owing to the inherently different nature
of interband and intraband absorption processes. Based on
these ascertainments, early works on graphene SA demon-
strated practical applications that ranged from fiber-based
mode-locked [21–23] and Q-switched [24,25] pulsed lasers
to solid-state lasers [26], pulse shaping [27], and vertical-
external-cavity surface-emitting lasers [28]. Recently, SA has
experimentally been observed in graphene-enhanced silicon
integrated waveguides of wire and slot type [29–31], showing a
remarkable modulation depth due to the deep light confinement
and the relatively long interaction length that silicon-on-
insulator (SOI) technology provides.

In an attempt to further exploit the SA modulation depth
and reduce the required operational power, in this work
we incorporate graphene with a silicon traveling-wave res-
onator, in order to capitalize on the intensity build-up of
the electromagnetic field that the latter provides. Based on
the combination of the first-order perturbation theory and the
temporal coupled-mode theory (CMT) [32], we meticulously
build an effective nonlinear framework that downgrades the
complex spatiotemporal Maxwell’s equations into simpler and
easier to solve, solely time-dependent differential equations,
retaining excellent accuracy, validated here through rigorous
full-wave nonlinear simulations. The framework is cautiously
developed to allow the incorporation of arbitrary bulk and
sheet-type materials, expanding an earlier work that mainly
focused on bulk semiconductors [33]. Especially for graphene,
the complicated nature of its linear loss saturation is captured
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to its full extent through the adopted power-dependent model
of its surface conductivity, revealing the physical insight
of the phenomenon when it is established inside resonant
structures. Additionally, the framework is capable of providing
design guidelines for high-performance, low-power all-optical
switching.

Though our primary focus is on SA, graphene additionally
exhibits a strong Kerr effect that may influence the behavior
of the resonant system and thus must be taken into account
for a more complete picture. This is easily achieved using the
proposed CMT-based framework through the incorporation of
an additional term, quantifying its relative strength with respect
to SA. Conveniently, this term is capable of modeling the Kerr
effect not only in graphene, but also in any underlying bulk
or sheet nonlinear material [13]. Likewise, other nonlinear
electromagnetic phenomena, such as two-photon absorption
(TPA) and the emerging free-carrier effects (FCEs) in silicon,
can also be incorporated [34] in order to model the resonant
system in its full extent. Nevertheless, for the resonant system
considered in this work, SA outperforms the Kerr effect,
TPA, and FCEs. In all cases, regardless of their relatively
weak strength compared to SA, the assortment of the existing
nonlinear effects results in rich dynamics for the resonant
system that can be explored using the proposed framework
when combined with a linear stability analysis [35]. All of
the framework capabilities, together with all-optical switching
actions, are demonstrated using a simple, yet representative
resonant system consisting of a graphene-enhanced silicon slab
ring resonator.

The paper is organized as follows. In Sec. II we introduce
saturable absorption in graphene and incorporate it into CMT
(using first-order perturbation theory) and employ both a strict
and an approximative approach which simplifies the analysis.
Extra care is taken for the framework to allow the handling
of different SA models, allowing one to incorporate a broad
range of materials. Following, a two-dimensional graphene-
enhanced resonant system is studied in Sec. III, targeting
the validation of the developed framework, as well as the
demonstration of a SA-based all-optical switching element.
Based on the plentiful nonlinear effects appearing in the
resonant structure under consideration, in Sec. IV the rich
system dynamics are explored. Finally, our work concludes
in Sec. V.

II. THEORETICAL FRAMEWORK

In this section, we introduce the saturation of resistive
losses in graphene through its linear surface conductivity.
Subsequently, we develop a formulation combining pertur-
bation theory and coupled-mode theory to analyze graphene-
comprising resonant systems that exhibit saturable absorption.

A. Saturable absorption in graphene

In the context of Maxwell’s equations, graphene is modeled
by a linear surface conductivity tensor σ̄ (1)

s to reflect its 2D
nature [36]. In the absence of static magnetic field (case studied
herein), the tensorial nature of graphene linear conductivity
may be reduced to a single parameter σ1. In that case, the
induced surface current density is calculated as Js = σ1E‖,

where E‖ are the tangential to the graphene sheet electric-field
components. The conductivity parameter σ1 is the outcome
of two types of electron transitions due to single-photon
absorption in graphene, namely the interband and intraband
absorption. In turn, it is described by the widely known Kubo
formula [37].

Despite the unique nature of the graphene energy diagram
(which is conoidal shaped near the Dirac point), the absorption
process might saturate under relatively intense electric field
[20,21], a phenomenon appearing in semiconductors as well,
referred to as saturable absorption. Being two remarkably dif-
ferent processes, intraband and interband absorption saturate
under different power levels, depending, among others, on the
Fermi level μc of graphene. Near the μc = 0 region (pristine
graphene), interband absorption dominates over the intraband
process and also saturates at much lower optical intensities
[20]. Under these conditions, intraband absorption is regarded
as a nonsaturable term for a broad range of input intensities.
The dynamic response of SA is often compacted within a
single relaxation time τrelax ≈ 400 fs [27]. Consequently, for
applications evolving at a rate of a few tens of picoseconds
or slower (equivalently for rates around tens of Gbps), we can
model SA in graphene as an instantaneous process. In terms of
conductivity, graphene losses are related to the real part of the
scalar surface conductivity, while the imaginary part refers to
the equivalent dielectric properties of graphene. Based on this
remark, we model SA in graphene according to

σ1 = σintra,Re + σinter,Re

1 + I/Isat
+ i(σintra,Im + σinter,Im), (1)

where σintra = σintra,Re + iσintra,Im and σinter = σinter,Re +
iσinter,Im are the contributions from intraband and interband
mechanisms to the overall surface conductivity, respectively,
I = |E‖|2/2η0 is the optical intensity, Isat = E2

sat/2η0 is the
saturation intensity, and η0 = 120π� is the impedance of free
space.

In our work, we consider graphene layers which are charac-
terized by a low value of the Fermi level. This parameter can be
tuned via chemical doping or external electrostatic biasing and
typically ranges from zero for pristine and unbiased graphene
to approximately 1 eV. In the optical regime and under the
condition |μc| < h̄ω/2, the interband term becomes dominant,
allowing us to use the model of Eq. (1) while multiphoton
processes, such as TPA or related phenomena, can be neglected
as being much weaker [20].

B. Perturbation theory and SA

Perturbation theory is employed to determine the complex
frequency shift �ω induced by the saturable surface conduc-
tivity of graphene in a resonant structure. It is expected that
�ω is purely imaginary, since loss saturation, appearing in a
nonwaveguiding sheet, is not supposed to alter the resonance
frequency. We first define the unperturbed and perturbed fields
through Maxwell’s curl equations in the frequency domain
(spatial dependence is suppressed),

∇ × E0 = −iω0μ0H0, (2a)

∇ × H0 = iω0ε0εrE0 + iσImδs(r)E0,‖, (2b)
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∇ × E = −iωμ0H, (2c)

∇ × H = iωε0εrE + iσImδs(r)E‖ + σinter,Re

1 + I/Isat
δs(r)E‖,

(2d)

where σIm = σintra,Im + σinter,Im is the imaginary part of the
total surface conductivity of graphene, δs(r) is the surface
Dirac function, and exp{+iωt} is used as the harmonic-time
convention. The imaginary part of the surface conductivity
is included in the linear problem. Equivalently, this term
could have been treated perturbatively, resulting in a constant
resonance frequency shift, which is easily calculated through
the linear problem. Both approaches lead to identical results.
Note also that we have completely disregarded the real part
of the intraband conductivity, as it is negligible compared to
the interband counterpart for |μc| < h̄ω/2. Total losses are
dominated by the resistive losses of graphene and, thus, bulk
materials are considered as lossless (the electric permittivity
εr is real). In addition, the dispersion of linear properties (in
particular, electric permittivity of silicon and surface conduc-
tivity of graphene) is sufficiently mild in the near infrared and
thus will not enter in our calculations [13].

Using the conjugated form of the reciprocal theorem
[38,39], accurate for lossless and nearly lossless systems, we
construct the function F = E∗

0 × H + E × H∗
0 and calculate its

divergence:

∇ · F = − i(ω − ω0)μ0H · H∗
0 − i(ω − ω0)εrε0E · E∗

0

− σinter,Re

1 + |E‖|2/E2
sat

δs(r)E‖ · E∗
0,‖. (3)

Following, the Gauss’ divergence theorem is applied in a
sufficiently expanded d-dimensional domain � (d = {2,3} for
two- and three-dimensional geometries, respectively), which
is enclosed by a (d − 1)-dimensional boundary �. Under
fairly low radiation losses, it is acceptable to consider that∫
�

∇ · F ddr = ∮
�

F · n d (d−1)r = 0 [12], where n is the
normal outward vector to the boundary �. Then, we can write
Eq. (3) as

0 = − i�ω

∫
μ0H · H∗

0 ddr − i�ω

∫
ε0εrE · E∗

0 ddr

−
∫

σinter,Re

1 + |E‖|2/E2
sat

E‖ · E∗
0,‖ dd−1r, (4)

where �ω = ω − ω0 is the resonance frequency shift due to
the saturable losses of the graphene sheet. We apply first-order
perturbation theory by assuming that graphene resistive losses
do not alter significantly the resonance mode, i.e., E ≈ E0,
H ≈ H0. Solving Eq. (4) for �ω, we obtain

1

τSA
= Im{�ω} =

∫
σinter,Re

1 + |E0,‖|2/E2
sat

|E0,‖|2 dd−1r∫
(μ0|H0|2 + ε0εr |E0|2) ddr

, (5)

where τSA denotes the cavity photon lifetime corresponding
to resistive losses of graphene under the effect of saturable
absorption. As anticipated, the frequency shift �ω is purely
imaginary resulting in a single loss term τSA. The integration
in the numerator of Eq. (5) is reduced by one order because of

the sheet nature of graphene. Note also that the denominator
can be identified as the quadruple of the total stored energy
W = (1/4)

∫
(μ0|H0|2 + ε0εr |E0|2) ddr in the resonator.

C. Coupled-mode theory and SA

The theoretical framework is completed by incorporating
the saturable absorption effect into the temporal coupled-mode
theory to analyze the response of nonlinear resonant structures.
According to CMT, a system consisting of a traveling-wave
resonator, side coupled to a straight waveguide, is described
by the pair of equations [40,41]

da

dt
= iω0a −

(
1

τSA
+ 1

τrad
+ 1

τe

)
a + i

√
2

τe

si, (6a)

st = si + i

√
2

τe

a, (6b)

where τrad and τe are the photon cavity lifetimes corresponding
to the radiative and coupling (external) losses, respectively.
We have deliberately included only the radiative part of the
total intrinsic losses in the resonator, as resistive losses are
introduced to Eq. (6a) through the power-dependent parameter
τSA. Although trivial under the examined conditions, losses
from the intraband term can be easily integrated to any power-
independent loss term; choosing the radiative term gives the
effective parameter (τ eff

rad)−1 = τ−1
rad + τ−1

intra, where τintra denotes
the fixed photon cavity lifetime due to intraband absorption.
The amplitude of the field in the cavity a is normalized so
that |a|2 ≡ W expresses the total stored energy in the cavity.
Similarly, si , st denote the amplitude of the incident and the
transmitted wave, respectively, and are normalized so that |s|2
expresses guided power.

Coupled-mode theory treats the resonator as a lumped
element, while the calculation of the lifetime parameter τSA in
Eq. (5) involves the spatially dependent values of the tangential
electric-field components E0,‖. To overcome this complication,
we first define the reference electric and magnetic fields,
measured respectively in

√
V/(A m2s) and

√
A/(V m2s), as

{Eref ,Href} = {E0/
√

W,H0/
√

W }, so that the total stored en-
ergy in the resonator equals one, i.e., |aref |2 = 1. Note that
aref is a unitless parameter. Total stored energy is proportional
to the square of electric- and magnetic-field values in every
position [42]. Hence we can calculate the photon lifetime
τSA with respect to |a|2 by substituting the field distribution
{|a|Eref ,|a|Href} to Eq. (5), i.e.,

1

τSA
= 1

4

∫
σinter,Re

1 + |a|2|Eref,‖|2/E2
sat

|Eref,‖|2 dd−1r, (7)

where Eref,‖ are the tangential to the graphene sheet com-
ponents of Eref and we have used the fact that |aref |2 =
(1/4)

∫
(μ0|Href |2 + ε0εr |Eref |2) ddr = 1. To numerically

solve the CMT equations defined in Eqs. (6), we first calculate
the reference fields through an unperturbed electromagnetic
problem and, then, for each temporal step and corresponding
stored energy |a|2 we compute the photon lifetime τSA through
Eq. (7).

In the special case of uniform electric-field values |E0,‖|
along the graphene sheet (anticipated in traveling-wave
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resonators with unidirectional excitation, where no standing
pattern is formed), we can obtain a simple linear expression
between photon lifetime τSA and stored energy in the resonator
|a|2

τSA = τSA,0

(
1 + |a|2

Wsat

)
, (8)

where τSA,0 denotes the cavity photon lifetime due to resistive
losses in the limit of vanishingly small electric-field intensities
and Wsat = (Esat/|Eref,‖|)2 is the equivalent saturation energy
(the value of the total stored energy for which the relaxation
time τSA doubles). The linear model of Eq. (8) is adequately
precise in resonators with a high level of symmetry, which
imposes electric-field values of the same order along the
graphene layer.

To better understand the impact of SA in a resonant scheme,
we first examine its continuous-wave (cw) response. For
simplicity, we take into account only the saturable absorption
through the simplified model of Eq. (8). This approach leads
to accurate results when SA is the dominant phenomenon and,
more importantly, it allows us to derive a single polynomial
expression for describing the nonlinear response of the system.
By assuming a constant field amplitude in the cavity a(t) =
ã exp{iωt}, we conclude from Eqs. (6a) and (6b) that

T ≡ Pout

Pin
=

δ2 + (
1

1+|ã|2/Wsat
− re

)2

δ2 + (
1

1+|ã|2/Wsat
+ re

)2 , (9)

where T is the power transmission coefficient, Pin = |si |2
and Pout = |st |2 are the input and output power in the bus
waveguide, δ = τSA,0(ω − ω0) is the normalized detuning
parameter, and re = τSA,0/τe. In the derivation of Eq. (9) we
have neglected radiation losses, as in many cases (including
the example considered in Sec. III) they are much lower than
resistive or coupling losses; yet they can be easily incorporated
as an extra, similar to re, term. Under this condition, it holds that
τSA ≈ 2Qi/ω0 (Qi is the power-dependent intrinsic quality
factor) and we can write

|ã|2 = Qi

Pin − Pout

ω0
= τSA,0

2

(
1 + |ã|2

Wsat

)
(Pin − Pout),

(10)

where we have used the simple model of Eq. (8) for the photon
lifetime τSA. Solving Eq. (10) for |ã|2 and making use of
Eq. (9), we finally arrive at

pout

pin
= δ2 + (1 − pin + pout − re)2

δ2 + (1 − pin + pout + re)2 , (11)

where we have introduced the normalized power levels aspin =
Pin/P

SA
0 and pout = Pout/P

SA
0 . The parameter

P SA
0 = 2Wsat

τSA,0
(12)

stands for the characteristic power of saturable absorption and
it is associated with the power level at which the SA-related
phenomena become important.

Equation (11) is a simple third-order polynomial expression
allowing one to calculate the transmission of the system.
Its normalized form makes it independent of the underlying

FIG. 1. Power transmission coefficient T versus normalized input
power pin. (a) re = {1,0.5,0.25} for δ = 0. Undercoupling (re < 1)
shifts minimum transmission to higher pin, while allowing for larger
transmission under low input power. (b) δ = {0,0.3,0.6} for re =
0.25. When the operating frequency ω deviates from the resonance
frequency ω0 (δ �= 0), minimum transmission elevates, resulting in
poor extinction.

system, yet it can be concretized providing the appropriate
parameter set {P SA

0 , δ, re}. Initially, we use Eq. (11) in order to
investigate the effect of the ratio re on the power transmission
curve. In Fig. 1(a), we depict T as a function of the normalized
input power for δ = 0 and different values of re. As expected,
for re = 1 we are under critical coupling conditions (Qi = Qe,
or τSA = τe) at low input power and transmission equals zero.
For higher input power, SA manifests by suppressing losses
and increasing the photon lifetime τSA. Therefore, the resonant
system deviates from critical coupling and transmission in the
bus waveguide increases. The opposite behavior is observed for
re < 1, where the transmission is nonzero for low input power
due to undercoupling conditions and eventually decreases to
zero for a sufficient input power level when resistive losses are
suppressed and critical coupling is met. Similarly, in Fig. 1(b)
we examine the effect of normalized detuning to power
transmission by setting re = 0.25 and appointing different
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FIG. 2. Air-cladded nonlinear 2D ring resonator, side coupled to
a bus waveguide through a coupling gap g. The resonance mode of the
uncoupled resonator (shown in the inset) for a radius R = 0.98 μm
has an azimuthal order of m = 12 and a resonance wavelength of
λ0 = 1550 nm. The standing-wave pattern shown emerges from
the superposition of two degenerate counterpropagating modes with
equal amplitudes.

values to δ. Clearly, as δ increases, transmission increases as
well. As we plan to exploit SA in the design of an all-optical
switching element, it is essential to have the minimum power
transmission at the low-output state in order to achieve a high
extinction ratio (ER). Thus the case of δ = 0 is ideal, since
we can theoretically obtain T = 0 for an appropriate value of
input power.

The so far developed CMT framework can be expanded
in order to include other nonlinear effects of bulk and sheet
materials. Details can be found in the Appendix. The general-
ized form of CMT equations will be the case of the example
considered in Secs. III and IV.

III. GENERIC NONLINEAR SYSTEM FOR SA-INDUCED
SWITCHING

Following the development of the nonlinear framework, in
this section we analyze a generic 2D nonlinear ring resonator
which is comprised of silicon and graphene, and is side coupled
to a silicon bus waveguide. We first use this example to validate
the theoretical framework described in Sec. II by comparing
the results with full-wave nonlinear vectorial finite element
method (VFEM) simulations. Moreover, we demonstrate the
possibility of all-optical switching originating from saturable
absorption in graphene layers.

A. Physical layout and properties

The physical system under consideration is depicted in
Fig. 2. By studying a two-dimensional geometry, we are able to
capture the qualitative behavior of the resonant system and to
validate the developed framework without the need of highly
priced 3D nonlinear simulations. The system consists of a
silicon slab ring resonator of inner radius R and width w, which
is side coupled to a straight silicon waveguide of the same
width. Furthermore, we have employed a graphene sheet in the
half of the outer perimeter of the ring resonator to introduce
loss saturation to our design.

FIG. 3. External quality factor Qe and ratio re = τSA,0/τe versus
the coupling gap g between the ring resonator and the bus waveguide.
The selected condition re = 0.25 is satisfied for a coupling gap of
237 nm. Inset: Ez component of the electric field for g = 237 nm
in the low-intensity limit, as obtained from a harmonic propagation
simulation.

We focus our attention on the NIR which is widely used for
communications and switching applications. At 1550 nm, we
assign a constant linear refractive index nSi = 3.478 for Si [43].
Silicon also possesses nonlinear properties valued at nSi

2 =
2.5 × 10−18 m2/W and βSi

TPA = 5 × 10−12 m/W, accounting
for Kerr effect and TPA, respectively. As for graphene, working
on a Fermi level of μc ≈ 0 results in linear surface conductivity
terms σinter = 60.9 μS and σintra = 0.3 − i3.4 μS [36,37], with
the interband contribution being dominant, as expected. We
also assume a saturation intensity of Isat = 1 MW/cm2, as
values of this order have been demonstrated experimentally
[27]. Lastly, graphene exhibits a nonlinear surface conductivity
σ3 = −i1.2 × 10−20 S(m/V)2, which is derived by the mea-
sured equivalent nonlinear parameters n2 ≈ −10−13 m2/W
and βTPA ≈ 0.9 × 10−7 m/W [15,16]. The transformation pro-
cess of bulk-equivalent parameters to nonlinear conductivity
is outlined in Refs. [13,44].

Regarding geometrical parameters, the width of the ring
resonator and the waveguide is set to w = 200 nm. The radius
R of the ring resonator is appropriately selected to obtain a
mode with the desirable resonance wavelength λ0 and low
radiative losses. For a radius of R = 0.98 μm, we calculate
λ0 = 1550 nm and a resonant mode of azimuthal order m = 12
(depicted in the inset of Fig. 2). The TE polarization allows
SA to manifest, through the interaction of the tangential
component of the electric field, Ez, and the graphene sheets.
Radiation losses are extremely low leading to an exception-
ally high quality factor Qrad ≈ 3 × 107. On the other hand,
graphene resistive losses dominate the total intrinsic losses of
the resonator; in the low-intensity limit (without the effect of
SA) we calculate Qres = ω0τSA,0/2 = 1249.

The coupling gap g between the ring resonator and the bus
waveguide determines the coupling losses and subsequently
the external quality factor, Qe, of the resonator. We depict
Qe and the ratio re with respect to the gap in Fig. 3. Note
that the lifetime parameter τSA,0 = 2.06 ps is calculated from

063836-5



ATALOGLOU, CHRISTOPOULOS, AND KRIEZIS PHYSICAL REVIEW A 97, 063836 (2018)

the uncoupled problem and remains constant regardless of
the coupling gap. Clearly, the external quality factor Qe

increases with g, as the coupling between the resonator and the
waveguide weakens. Based on the findings of Sec. II C, we opt
for undercoupling conditions in the low intensities limit, and
more specifically for the re = 0.25 case. According to Fig. 3,
this value corresponds to a coupling gap of g = 237 nm and
an external quality factor of Qe = 4996.

In order to introduce into the CMT equations nonlinear
effects in addition to SA, we first have to compute the
corresponding nonlinear coefficients γ describing the strength
of each nonlinear phenomenon. Details on the expressions
used for the calculation of Kerr, TPA, and FCEs coefficients
can be found in the Appendix. It is also noted that we use
a weakly coupled harmonic propagation simulation to obtain
the electromagnetic field distribution necessary for estimating
the parameters of the various nonlinear effects (the alternative
calculation using an eigenvalue problem requires a specific
correction in the case of traveling wave resonators [12]).
We find that the Kerr effect induced by graphene (γKerr,s =
−6.2 × 1017 W−1s−2m) outweighs the Kerr effect originat-
ing from silicon (γKerr,b = 5.6 × 1016 W−1s−2m); the overall
response is identical to a defocusing material (n2 < 0). It is
also important that SA exhibits a relatively low characteristic
power P SA

0 = 856 W/m, while the characteristic powers of
the Kerr effect and the free-carrier dispersion are P Kerr

0 =
2/(τ 2

i |γKerr|) = 8.4 × 105 W/m and P FCD
0 = 2/(τ 3

i γFCD)1/2 =
5.9 × 105 W/m, respectively (where the cavity lifetime τi

is substituted with the SA parameter τSA,0). Given that the
characteristic power is a metric revealing the input power for
which the respective effect becomes important, SA is expected
to be the only nontrivial nonlinear effect for input power levels
as high as 104 W/m.

B. Numerical validation

Having specified the geometrical parameters of the resonant
system, we validate the accuracy of the CMT framework
described in Sec. II under cw conditions. In particular, we
feed Eq. (6) with an input power profile of a linear ramp
function up to a fixed value and calculate the transmission
after the system has been stabilized. We consider both the
rigorous calculation of the power-dependent parameter τSA

through Eq. (7) and its linear approximation in Eq. (8). In
addition, we perform full-wave nonlinear VFEM simulations
(including SA) using COMSOL Multiphysics® to assess the
results obtained using CMT. Additionally, we study the effect
of the other nonlinear phenomena by solving the generalized
Eqs. (A1)–(A4) appearing in the Appendix. In Fig. 4 we plot
the system transmission for input powers up to 104 W/m
using the methods described above. We have also included the
transmission curve using the model σinter,Re/

√
1 + 3I/Isat for

the saturable term of graphene surface conductivity with the
same value for the saturation intensity Isat [20]. Although we
do not use this model in what follows, recent theoretical studies
have shown that SA in graphene scales with 1/

√
I in the limit

of large incident intensities I . Despite the different SA models
available in the literature, it is emphatically pointed out that the
presented theoretical framework can handle any model for SA
in graphene only with minor changes in the final expressions

FIG. 4. Power transmission T under cw conditions for the res-
onant system of Fig. 2. CMT Eqs. (6) are solved, both with the
exact expression of τSA through Eq. (7) (blue solid line) and the
simple model of Eq. (8) (red dashed line). The calculated results are
in perfect agreement with the nonlinear VFEM simulations (brown
square markers). Kerr effect, TPA, and FCEs (black solid line)
manifest only for higher input powers. The general trends are similar
for the square-root model of SA, except for the smoother changes
in transmission and the higher input power needed to reach critical
coupling.

presented in this work, extracted strictly by using the model of
Eq. (1).

Figure 4 reveals excellent agreement between the trans-
mission curves obtained through nonlinear simulations (brown
markers) and CMT equations (blue solid line). The accuracy
of the results is not affected when the simple approximation
of Eq. (8) is applied to calculate the photon lifetime τSA (red
dashed line). That is primarily due to the symmetry of the
structure that imposes nearly constant values of the electric-
field component Ez along the graphene sheet, as shown in the
inset of Fig. 3. Note also that the inclusion of the Kerr effect,
TPA, and FCEs modifies the transmission only for the larger
input powers examined (black solid curve), as expected from
the higher P Kerr

0 and P FCD
0 compared to P SA

0 .
For the saturation model of Eq. (1) transmission is 0.36 in

the low intensities limit, drops to zero for Pin = 641 W/m, and
gradually increases to 1 for higher input powers. The overall
behavior is similar, when the alternative square-root model is
considered. Due to the weaker dependency of conductivity on
electric field, the changes in transmission curve are smoother
and a higher input power of 1061 W/m is necessary to reach
critical coupling.

According to Ref. [45], SA in graphene may also modify the
imaginary part of the interband conductivity term and induce
a nonlinear resonance frequency shift. Following a procedure
similar to that of Sec. II B, it is estimated that the SA-induced
normalized frequency shift at the input power of 641 W/m
is δSA = −0.06. The effect of this term regarding the cw
transmission curve is negligible; the minimum transmission
is 0.01% instead of zero. Nevertheless, the zero power trans-
mission at the OFF state can be restored by applying a fixed
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detuning δ = +0.06 to the frequency of input signal. In this
case, the SA-induced frequency shift is fully counteracted for
the input power of 641 W/m, while in the low intensity limit
(where δSA = 0) the power transmission is slightly improved
due to the nonzero detuning δ [cf. Fig. 1(b)].

C. Demonstration of all-optical switching

In order to design a functional all-optical switching element
based on the resonant structure of Fig. 2, a control signal
should be applied. In the absence of any control signal the
low-power (1 W/m) probe signal is transmitted according
to the cw transmission curve in Fig. 4 and the high-output
(ON) state is achieved, though with moderate losses. To switch
to the low-output (OFF) state, a control signal is applied,
carrying an input power of Pin,c, appropriately selected to
render critical coupling of the probe signal, owing to the
saturation of graphene losses.

However, the two signals propagate simultaneously in the
same waveguide. Thus, to avoid distortion of the probe signal,
they should be distinguishable in the frequency domain. Two
options are considered for the central frequencies of probe
and control signals. In the first, the two signals are placed
in the same resonant mode with a sufficient detuning in the
frequency of the control signal. For the second, the frequencies
of the probe and control signals correspond to two consecutive
resonances and thus the signals propagate in different resonant
modes. Note that, in the first case, detuning should definitely
refer to the control signal, since zero detuning of the probe
signal is a prerequisite for attaining exactly zero transmission,
as shown in Sec. II C. Inevitably, that will result in inferior
coupling of the control signal and the power efficiency (in terms
of necessary input power Pin,c) will be reduced. Similarly,
in the second case a portion of the input power Pin,c is not
coupled to the resonator, as critical coupling conditions cannot
be simultaneously met for both resonant modes due to the
different cavity lifetime parameters.

To evaluate the performance of each option, we compute the
transmission of the probe signal as a function of the control
signal power. We solve a system of equations identical with
those presented in Eqs. (6), encountering for two resonance
modes, i.e., ap and ac for the probe and the control signal,
respectively. The input power of the probe signal is set to
Pin,p = 1 W/m, which is insufficient for the saturation process
to develop and thus SA is solely induced by the control
signal. In Fig. 5, we depict transmission for a detuning of
�λ = 0.2 nm (the wavelengths of the probe and the control
signal are λp = 1550 nm and λc = 1549.8 nm, respectively)
and for two consecutive resonant modes (λp = 1550 nm and
λc = 1461 nm, respectively). The corresponding normalized
detuning for the control signal in the first scenario is δc = 0.32.
The cw curve of Fig. 4 is also included; although the two signals
cannot be separated in this case, it serves as a lower bound for
the required power Pin,c of the control signal. We observe that
the selection of two consecutive resonances is advantageous
in terms of the necessary power to switch to the OFF state.
Specifically, an input power of Pin,c = 712 W/m is required,
which is lower than Pin,c = 876 W/m needed even in the case
of a small frequency detuning �λ = 0.2 nm. That is because
of the stronger coupling of the control signal to the resonator,
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FIG. 5. Probe signal power transmission T under cw conditions
versus the input power of the control signal Pin,c. The option of two
consecutive resonances for the distinction of the two signals (red
dashed line) results in lower power requirements to reach the OFF
state compared to the option of one resonant mode with a detuning
of �λ = 0.2 nm for the control signal (black solid line). The limiting
and unrealistic case of identical frequencies is also depicted for
comparison.

when two resonant modes are considered, leading to better
exploitation of the input power in the saturation of graphene
losses. Note that a frequency detuning of �λ = 0.2 nm (half
of a typical channel bandwidth in a dense WDM system) is
essential for the successful separation of two optical signals and
higher detunings would result in even greater power demands.
The results remain intact, even when considering saturation in
the σinter,Im, according to the model of Ref. [45].

All-optical switching is demonstrated in Fig. 6, where the
temporal response of the system is investigated using the
CMT formalism developed. In particular, we assume that the
probe signal consists of a train of super-Gaussian pulses with
a full width at half maximum (FWHM) of 60 ps and a bit
rate of 10 Gbps. The latter suggests that the bit duration is
larger than the relaxation time of SA by at least two orders of
magnitude, fully allowing one to model SA as an instantaneous
phenomenon. The option of two successive resonances is used;
probe and control signals have central wavelengths of 1550 nm
and 1461 nm, respectively. The parameters characterizing the
resonance mode used for the probe signal have been given
in Sec. III A, while the resonant mode used for the control
signal is characterized by τSA,0 = 2.13 ps, Qe = 10433, and
re = 0.13. For the numerical simulations of the resonant mode
at λc = 1461 nm, the dispersion of silicon and graphene
properties has been considered [36,43].

At first, the system operates at the high-output state and
the probe signal is transmitted undistorted with maximum
power of 0.36 W/m, in excellent agreement with the cw
transmission in the low-intensity limit (Fig. 5). After the first
three bits, a control signal of constant power Pin,c = 712 W/m
is applied in order to render critical coupling of the probe
signal and shift operation to the low-output state. As observed,
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FIG. 6. Temporal response of the ring resonator system (λp =
1550 nm; λc = 1461 nm). All-optical switching is demonstrated
with the control signal used to toggle the system to the OFF state.
During the ON state (first three bits), the probe signal is transmitted
undistorted, though with some attenuation, as predicted from the cw
transmission curve of Fig. 5. When a control signal with Pin,c =
712 W/m is applied, the transmission is suppressed leading to an
almost zero output with only limited transient effects appearing.

the transmission of the probe bitstream is greatly reduced and
only limited transient phenomena exist, when a logical 1 is
injected to the waveguide. Specifically, the higher transient
effect appears just after the onset of the pumping. Assuming
that the sampling is done in the center of each time slot, we find
that the output powers of the fourth and the sixth bit are 8.5 dB
and 18 dB lower than the transmission of logical 1 during
the ON state. Note that we have considered the worst-case
scenario in our demonstration, where both bits preceding and
succeeding switching correspond to a logical 1. Every other
case would result in an even weaker transient effect and a higher
extinction between the two states. Lastly, it is pointed out that
an appropriate detuning δp = δc = −δSA should be applied to
counteract any SA-induced frequency shift, as discussed for
cw conditions in Sec. III B.

Different design modifications can be applied in order to
optimize the switching properties of the resonant system. First
of all, the maximum transmission can be increased for smaller
re, at the expense of higher power requirements to switch
between states, as indicated in Fig. 1(a). Alternatively, the
quality factor of the resonant system can be lowered, allowing it
to respond faster and minimize the transient effects observed in
Fig. 6. Finally, the pulse shape and duration can also be chosen
appropriately to acquire the desired switching characteristics
for the resonant system under study.

IV. NONLINEAR SYSTEM DYNAMICS

Although our analysis focused on the application of all-
optical switching as demonstrated in Sec. III C, the nonlinear
resonant system under investigation exhibits a rich dynamic
behavior stemming from the interplay of different nonlinear

FIG. 7. BI and SP regions for re = 1 and τc/τSA,0 = 0.97.
(a) SA is considered with Isat = 1 MW/cm2. (b) SA is neglected
and graphene conductivity remains constant. A substantial growth in
power requirements is observed for BI and SP owing to the absence
of SA.

phenomena in silicon and graphene. In particular, optical bista-
bility (BI) and self-pulsation (SP) can be obtained for proper
design selections and input power levels Pin. Through a linear
stability analysis (details can be found in the Appendix) we
distinguish between the regimes where BI, SP, or a combination
of both can be observed.

Self-pulsation can manifest when carrier and cavity life-
times are of the same order of magnitude [35]. In our case,
the cavity lifetime of the uncoupled ring is mainly determined
by the power-dependent parameter τSA. On the other hand, the
carrier lifetime is set to τc = 8 ps. Typically in the order of ns,
carriers lifetime can be reduced to the above-mentioned value
through carrier sweeping, if a reverse biasing is applied by elec-
trodes on the two sides of the ring resonator [46]. Alternatively,
ion implantations can be introduced in Si, acting as traps for
the free electrons, reducing τc [47]. To optimize bistability and
self-pulsation in terms of the required input power, we appoint
the value τ ′

SA,0 = 4τSA,0 = 8.24 ps to the lifetime parameter in
the low-intensity limit. Such a modification can easily be made
by reducing the arc of the graphene sheet; due to the symmetry
of the structure, a four times increase in τSA,0 is obtained by
covering only a 45o arc of the outer ring perimeter (that will also
result in a four times reduction in γKerr,s coefficient). Therefore,
we get that re = 1 and τc/τSA,0 = 0.97. Both of these values are
considered beneficial for the manifestation of self-pulsation, as
will be demonstrated.

We predict the nature of the response for a range of
detunings and input powers in order to specify the BI/SP
regions in the δ-Pin plane. In Fig. 7(a), we illustrate the different
regions, when considering SA in graphene. As observed, BI can
be obtained for an input power as low as Pin = 21 mW/μm and
a normalized detuning of δ ≈ 1.4. Because the Kerr effect in
graphene overshadows the Kerr effect in Si, the Kerr-induced
resonance frequency shift has the same sign as the FCD-
induced frequency shift originating from Si. As a result, the two
nonlinear phenomena act collaboratively for the appearance of
bistability and the BI region spans only in positive detunings.
Although a purely Kerr-induced BI appears exclusively for δ >

2
√

3 [40], it is noted that FCEs and SA weaken significantly
this requirement. SP also appears for an input power of Pin ≈
127 mW/μm both in combination with BI [purple (gray)
region] and independently [red (light gray) region].
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To analyze the effect of SA on the dynamics of the resonant
system, we artificially assume that the graphene losses do
not saturate (Isat → ∞). The modified regions are specified
through the same analysis and presented in Fig. 7(b). Obvi-
ously, the absence of SA shifts the BI/SP regions to higher input
powers and detunings. Specifically, when SA is neglected,
minimum power requirements are increased to 115 mW/μm
for BI and to 1.3 × 103 mW/μm for a (pure) SP response.
Therefore, we conclude that SA substantially facilitates the
manifestation of optical bistability and self-pulsation at lower
powers and smaller detunings. That is primarily due to the
increase of the power-dependent cavity lifetime τSA, allowing
for higher intrinsic quality factors.

V. CONCLUSION

To recapitulate, we have developed a rigorous framework
for analyzing resonant structures exhibiting saturable absorp-
tion originating from graphene. The proposed framework is
highly accurate, requires minimal computational resources,
and gives a better physical insight of the loss saturation in
resonant structures from the designer’s point of view. Apart
from the specific equation used to model graphene SA, we have
shown that the framework can handle any model of closed-
form equations characterizing SA, rendering it appropriate
for describing instantaneous absorption saturation not only in
graphene but in any other nonlinear bulk or sheet material with
sufficiently complicated behavior. Furthermore, CMT allows
the systematic incorporation of other nonlinear phenomena that
appears in graphene and silicon, such as the Kerr effect, TPA,
and FCEs, corroborating it as a dominant numerical tool set in
the nonlinear resonator analysis and design process.

Based on the developed framework, we have demonstrated
all-optical switching actions in a simple, yet representative
example of a graphene-enhanced silicon slab ring resonator,
side coupled to an access waveguide. Despite the fact that this
work did not target on proposing a high-performance switch
but hardly the framework capabilities, the resulting switching
element presents satisfactory metrics (high ER, low operation
power), which are promising for the design of practical all-
optical switches in 3D, based on graphene saturable absorption.
Besides, the resonant system evince rich dynamics (admitting
bistability and self-pulsation), allowing for more elaborate
actions that deem further study.

APPENDIX: GENERALIZATION OF CMT EQUATIONS,
NORMALIZATION, AND STABILITY ANALYSIS

Following the introduction of saturable absorption into
the CMT framework, we generalize Eq. (6a) to include the
effect of several others nonlinear mechanisms. These are the
Kerr effect of both sheet and bulk materials, two-photon
absorption in silicon, and the emerged free-carrier dispersion
and absorption. For a resonant structure that encompasses
all the aforementioned nonlinear phenomena, the temporal
evolution of the slowly varying envelope ã(t) is governed by
the differential equation [34]

dã

dt
= i

(
ω0 − ω − γKerr|ã|2 + γ

dyn
FCDN̄

)
ã

−
(

1

τSA
+ 1

τrad
+ 1

τe

+ γTPA|ã|2 + γ
dyn
FCAN̄

)
ã

+ i

√
2

τe

s̃i , (A1)

where γ parameters describe the strength of the corresponding
nonlinear mechanism. Equation (A1) strictly refers to traveling
wave resonators, side coupled to a bus waveguide; for different
resonant systems the last term in the right-hand side should
be modified appropriately to describe the coupling conditions.
The γKerr and γTPA quantities include the contributions of both
bulk and sheet materials, as defined in Ref. [13]. Specifically,
for the Kerr effect originating from graphene and silicon the
two contributing terms act in opposition and the sign of the
total frequency shift depends on their relevant strength. We
have also defined the FCEs parameters as

γ
dyn
FCD = 1

2
ω0

κFCE

κN

σn, (A2a)

γ
dyn
FCA = 1

4
c0

κFCE

κN

σa, (A2b)

where κFCE and κN are dimensionless quantities defined in
Ref. [34], σn = 5.5 × 10−27 m3, and σa = 14.5 × 10−22 m2

[48]. As Eq. (A1) indicates, γ parameters relate the stored
energy |ã|2 or the carrier density N̄ to a nonlinear resonance
frequency shift or to nonlinear losses, depending on the nature
of each nonlinear effect. They are all proportional to the
respective nonlinear refractive index or nonlinear surface con-
ductivity and to the corresponding dimensionless parameters
κ measuring the overlap between the mode and the nonlinear
materials. We also define N̄ as a spatially averaged carrier
density of the coordinate-dependent density N ,

N̄ =

∫
N (r)|E0(r)|2ddr∫

|E0(r)|2ddr

, (A3)

following the approach proposed in Ref. [49]. The temporal
evolution of N̄ is governed by

dN̄

dt
= − N̄

τc

+ γN |ã|4, (A4)

where τc is the free carrier lifetime and γN is a coefficient
defined as in Ref. [34].

Equations (A1) and (A4) are difficult to handle numeri-
cally, as the involved variables differ by several orders of
magnitude. To compensate for these differences, we employ
a normalization procedure by defining the normalized quanti-
ties ũ = ã/W

1/2
sat , n̄ = N̄/(τSA,0W

2
satγN ), ψ̃ = s̃/(P SA

0 )1/2, and
t ′ = t/τSA,0 and reach

dũ

dt ′
= i

( − δ − rKerr|ũ|2 + r
dyn
FCDn̄

)
ũ

−
(

1

1 + |ũ|2 + rrad + re + rTPA|ũ|2 + r
dyn
FCAn̄

)
ũ

+ i2
√

reψ̃i , (A5a)

dn̄

dt ′
= −τSA,0

τc

n̄ + |ũ|4, (A5b)
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TABLE I. Dynamic behavior of Eq. (A1) solutions based on the eigenvalues of their respective J matrix.

cw solutions 1 3

Stable λR < 0
Re{λC} < 0

BI λR
1 < 0 λR

2 < 0 λR
3 > 0

Re{λC
1 } < 0 Re{λC

2 } < 0 Re{λC
3 } < 0

SP λR < 0
Re{λC} > 0

BI + SP λR
1 < 0 λR

2 < 0 λR
3 > 0

Re{λC
1 } > 0 Re{λC

2 } < 0 Re{λC
3 } < 0

where we have introduced the ratios re = τSA,0/τe and rrad =
τSA,0/τrad, the Kerr parameter rKerr = γKerrτSA,0Wsat, the TPA
parameter rTPA = γTPAτSA,0Wsat, and the dynamic FCE param-
eters r

dyn
FCD = γ

dyn
FCDτ 2

SA,0W
2
satγN and r

dyn
FCA = γ

dyn
FCAτ 2

SA,0W
2
satγN ;

all represent the relative strength of each nonlinear effect with
respect to SA. The choice of a normalization based on SA is
fully reasonable, as SA is the dominant nonlinear effect in the
example presented in this work.

We also outline here a linear stability analysis allowing one
to predict the manifestation of bistable or self-pulsing behavior
in the optical response of the nonlinear system, since both
the Kerr effect and free-carrier dispersion are present [35,50].
The analysis is based on the perturbation of the steady-state
solutions of the normalized set of Eqs. (A5) [51,52]. We extend
this analysis to allow for resonant systems that additionally
exhibit SA. For each of the solutions {ũ,n̄} in the steady state

(three solutions exist in the case of bistability), we assume a
small perturbation resulting in ũ′ = ũ + δũ and n̄′ = n̄ + δn̄.
Neglecting second- or higher-order perturbative terms and
using the approximation 1/(1 + x) ≈ 1 − x for x � 1, we
write

1

1 + |ũ + δũ|2 ≈ 1

1 + |ũ|2
(

1 − ũ∗δũ + ũδũ∗

1 + |ũ|2
)

, (A6)

and consider that the perturbation vector ε = [δũ δũ∗ δn̄],
which satisfies the linear equation dε/dt ′ = Jε. The square
matrix J has the form

J =
⎡
⎣J1 J2 J3

J ∗
2 J ∗

1 J ∗
3

J4 J ∗
4 J5

⎤
⎦, (A7)

where the individual elements are given by

J1 = i
(
−δ − 2rKerr|ũ|2 + r

dyn
FCDn̄

)
−

(
rrad + re + 1

1 + |ũ|2 − |ũ|2
(1 + |ũ|2)2

+ 2rTPA|ũ|2 + r
dyn
FCAn̄

)
, (A8a)

J2 = −irKerrũ
2 − rTPAũ2 + ũ2

(1 + |ũ|2)2
, (A8b)

J3 = ir
dyn
FCDũ − r

dyn
FCAũ, (A8c)

J4 = 2|ũ|2ũ∗, (A8d)

J5 = −τSA,0

τc

. (A8e)

The eigenvalues of J indicate whether bistability or self-
pulsation appears for a given set of parameters in the δ − Pin

plane [35,51,52]. Specifically, J has a real eigenvalue λR

and two complex conjugate eigenvalues λC. A positive real
eigenvalue corresponds to an unstable solution of Eq. (A1)
(thus never practically observable), while a positive real part
of the complex eigenvalues (Hopf bifurcation) corresponds to

an oscillatory output, i.e., self-pulsation. All possible combi-
nations of Eq. (A1) solutions with their respective eigenvalues
and the expected dynamic behavior are gathered in Table I. In
the most complex case, where bistability and self-pulsation are
both present, it is noted that only the low-output state exhibits
an oscillatory output, while the high-output state corresponds
to a constant stable solution, as an insufficient number of free
carriers develop in the resonator for the oscillation to take place.
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