

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  JANUARY 08 2024

A coupled-mode-theory formulation for periodic multi-
element metasurfaces in the presence of radiation losses 
Maria-Thaleia Passia   ; Traianos V. Yioultsis  ; Emmanouil E. Kriezis 

J. Appl. Phys. 135, 023102 (2024)
https://doi.org/10.1063/5.0179442

 08 January 2024 13:05:13

https://pubs.aip.org/aip/jap/article/135/2/023102/2932788/A-coupled-mode-theory-formulation-for-periodic
https://pubs.aip.org/aip/jap/article/135/2/023102/2932788/A-coupled-mode-theory-formulation-for-periodic?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/jap/article/135/2/023102/2932788/A-coupled-mode-theory-formulation-for-periodic?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0002-9967-566X
javascript:;
https://orcid.org/0000-0002-6712-8936
javascript:;
https://orcid.org/0000-0001-6407-2810
javascript:;
https://doi.org/10.1063/5.0179442
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2288747&setID=592934&channelID=0&CID=840257&banID=521619172&PID=0&textadID=0&tc=1&scheduleID=2208988&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjap%22%5D&mt=1704719113902182&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjap%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0179442%2F18290689%2F023102_1_5.0179442.pdf&hc=80c2359fbaa85267c3010ab28aeb3f66615e5147&location=


A coupled-mode-theory formulation for periodic
multi-element metasurfaces in the presence of
radiation losses

Cite as: J. Appl. Phys. 135, 023102 (2024); doi: 10.1063/5.0179442

View Online Export Citation CrossMark
Submitted: 2 October 2023 · Accepted: 10 December 2023 ·
Published Online: 8 January 2024

Maria-Thaleia Passia,a) Traianos V. Yioultsis, and Emmanouil E. Kriezis

AFFILIATIONS

School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece

a)Author to whom correspondence should be addressed: passiamg@ece.auth.gr

ABSTRACT

We derive a coupled-mode theory (CMT) formulation for the fast analysis of periodic multi-element metasurfaces in the presence of radia-
tion losses. Full-wave simulations of periodic multi-element metasurfaces are very time- and memory-consuming, especially as the size and
complexity of the metasurface increase. The CMT formulation provides a considerably faster and efficient alternative. It results in a small
system of equations with size equal to the number of supported resonator modes in the frequency range of interest, allowing to calculate the
resonator mode amplitudes and, consequently, the metasurface response. Subsequently, we systematically derive analytical closed-form
expressions for the coupling coefficients between two weakly coupled resonators in the presence of radiation losses and incorporate them
into the CMT model, which is found important for the accurate description of the metasurface, while also providing insight into the under-
lying physics of complex metasurfaces. We validate the proposed formulation on benchmark examples of both metal- and dielectric-based
metasurface absorbers (MSAs) by comparing the CMT results to spectral FEM simulations of the composing supercell. To further demon-
strate the potential of the proposed formulation, as a proof of concept, we use the CMT to synthesize a larger optimized periodic multi-
element MSA. A comprehensive comparison to full-wave FEM simulations of the composing supercell is included in terms of time and
computational requirements, which shows that our method provides a valuable and efficient alternative solver for synthesizing complex
metasurfaces.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0179442

I. INTRODUCTION

Over the past years, metasurfaces have gained considerable
interest, as they are the two-dimensional extension of the well-
established electromagnetic metamaterials1 and offer a planar and
lightweight alternative to bulky electromagnetic devices.2

Metasurfaces are capable of controlling and efficiently guiding
propagating waves by engineering the properties of individual reso-
nant elements. Although uniform metasurfaces have been used in
several applications,3 periodic multi-element designs have gained
increasing interest, as they offer greater design flexibility. Periodic
multi-element metasurfaces are synthesized by periodically repeat-
ing a combination of several resonators, which is commonly
referred to as a supercell. The supercell consists of an arrangement
of non-uniform resonators. The resonators may be of different
shapes or sizes, each having different electromagnetic properties.
Periodic multi-element metasurfaces are used to obtain a

broadband or multiband response, acting as absorbers or filters, as
they combine multiple elements, each resonating at a different
frequency.4–6 Periodic multi-element metasurfaces are also essential
in antenna applications, lenses, beam splitters, and diffraction grat-
ings, to realize desired far-field patterns.7

A common, state-of-the-art practice for synthesizing periodic
multi-element metasurfaces is to use a predetermined continuous
function of an electromagnetic quantity, which is calculated by an
analytical model.8 The continuous function is discretized, and
appropriate unitcells are selected for each position along the meta-
surface. This process is relatively fast, as only single-unitcell full-
wave simulations are needed.9 However, in certain applications, an
analytical distribution may not be available. In such cases, metasur-
faces are often synthesized by full-wave simulations of the entire
supercell, which are computationally expensive, especially for larger
or more complex metasurfaces. Optimized configurations must be
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subsequently designed by full-wave-simulation-based optimization,
which is even more computationally prohibitive. Hence, there is a
need for a significantly faster method that may facilitate and accel-
erate the design of such complex metasurface structures, while also
maintaining high accuracy.

The coupled-mode theory (CMT)10,11 is a semi-analytical
method that has been used to effectively model configurations con-
sisting of a small number of resonators, frequently coupled to one
or more transmission lines.12–15 It has been also extensively used to
analyze uniform metasurfaces by modeling the metasurface
unitcell.16–19 Recently, periodic multi-element metasurfaces are also
analyzed by the CMT,20–23 mostly in thermal emitter applications,
providing a faster alternative to full-wave simulations. Within the
CMT framework, coupling coefficients between the resonators are
frequently determined by fitting the CMT curve to full-wave spec-
tral simulations.22,23 Overlap integrals have also been used in
certain cases.21,24 Analytical models have been used for simple geo-
metric shapes.21 We also note that radiation losses are inherently
present in all microwave free-space devices, such as absorbers, as
they quantify the coupling of each resonator mode to the incident
wave. It is important to accurately and systematically derive analyti-
cal expressions for the coupling coefficients between resonators
that also take radiation losses into account, in order to fully capture
the underlying physics and provide a systematic path to metasur-
face design.

In this work, we propose a CMT formulation for the fast and
accurate analysis and synthesis of periodic multi-element meta-
surfaces comprised by weakly coupled resonant elements by sys-
tematically deriving closed-form expressions for the coupling
coefficients in the presence of radiation losses. The coupling coef-
ficients are straightforwardly and effortlessly determined, instead
of using a fitting process, which is a different well-documented
approach. The closed-form coupling coefficient expressions will
provide greater insight into the underlying physics of complex
metasurfaces and facilitate the synthesis of optimized structures.
The derived expressions are simple, as they resemble the ones
used in lossless systems,25 and require only knowledge of the
coupled and uncoupled complex angular resonance frequencies.
The use of eigenfrequency simulations instead of multiple full-
wave excitation simulations to determine the coupling coefficients
provides an additional side advantage. Our formulation is versa-
tile, as it may be applied to both metal and dielectric resonant
metasurfaces,26 circumventing limitation of other semi-analytical
approaches that are based on surface current formulations.27 We
demonstrate the validity of the proposed formulation across dif-
ferent microwave absorber platforms, synthesized by periodic
multi-element metal or dielectric resonators. We will thereby
compare the CMT response against the response obtained by full-
wave spectral simulations of the composing supercell. To further
demonstrate the potential of this semi-analytical approach, as
proof of concept, we synthesize a larger optimized microwave
metasurface absorber (MSA) by using the CMT in conjunction
with an optimization algorithm. Finally, we provide a comprehen-
sive discussion on the advantages of the CMT formulation over
full-wave synthesis approaches by demonstrating the time benefits
on a complex, three-dimensional, computationally challenging
microwave absorber metasurface.

II. CMT FORMULATION FOR N WEAKLY COUPLED
RESONATORS

We consider a metasurface consisting of N weakly coupled
resonators, excited by a normally incident plane wave. In this work,
we consider periodic multi-element metasurfaces, with the resona-
tor pattern arranged on a metal-backed substrate; hence, a single
port exists. Within the CMT framework, each resonator mode is
described by a decay rate equation, with the entire metasurface
modeled as follows,11 assuming a time harmonic convention of
exp(jωt),

dAðtÞ
dt

¼ jΩ0 AðtÞ � Γe AðtÞ � Γi AðtÞ þ KTsþ; (1)

with

A(t) ¼ [α1(t), α2(t), . . . , αN (t)]
T, (2a)

Ω0 ¼ diag ωt,1, ωt,2, . . . , ωt,Nð Þ, (2b)

Γi ¼ diag γ i,1, γ i,2, . . . , γ i,N
� �

, (2c)

K ¼ [k1, k2, . . . , kN ], (2d)

Γe ¼

γe,1 κ12 � � � κ1N

κ21 γe,2 � � � κ2N

..

. ..
. . .

. ..
.

κN1 κN2 � � � γe,N

2
6664

3
7775: (2e)

The vector A(t) denotes the resonator mode amplitudes, with
jαn(t)j2 being the energy stored in resonator n. We focus on reso-
nators that support a single mode within the frequency range of
interest, with the resonator modes being well-separated. The diago-
nal matrix Ω0 refers to the individual angular resonance frequen-
cies (real part) of all modes, considering any intrinsic loss
mechanism present. The diagonal elements of matrix Γe are the
external decay rates of each resonator mode, and the off-diagonal
elements are the total coupling coefficients between resonators,
including all near- and far-field coupling effects. Other alternatives
are also possible, for instance, assigning near-field coupling effects
to the off-diagonal positions of Ω0 and exclusively far-field cou-
pling effects to Γe. In our formulation, we do not opt for distin-
guishing between near- and far-field coupling effects. The diagonal
matrix Γi refers to the intrinsic decay rates, sþ is the amplitude of
the incident wave, and vector K refers to the coupling between
every resonator and the incident wave sþ.

The decay-rate system of equations (1) is complemented by an
equation that relates the amplitude of the reflected wave s� to that
of the incoming wave sþ and the resonator mode amplitudes. In
addition, c accounts for the direct scattering process in the absence
of resonators, which in our case is the return from a fully reflecting
metal surface (perfect electric conductor). The quantities c, sþ, and
s� are scalar, as we refer to a single-port configuration. The vector
D ¼ d1 d2 � � � dN½ � quantifies the coupling of each mode to

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 135, 023102 (2024); doi: 10.1063/5.0179442 135, 023102-2

Published under an exclusive license by AIP Publishing

 08 January 2024 13:05:13

https://pubs.aip.org/aip/jap


the outgoing wave,

s� ¼ csþ þDA(t): (3)

Once the system of equations described in Eq. (1) is solved, in
steady-state or under transient illumination, we can calculate the
metasurface response by Eq. (3).

By energy conservation, time-reversal symmetry, and reciproc-
ity, the following conditions11 apply, strictly valid for Γi ¼ 0:

DyD ¼ Γe
y þ Γe, (4a)

cD* ¼ �D, (4b)

K ¼ D, (4c)

where y denotes the conjugate transpose of the matrix. We note
that we use the condition of Eq. (4a) instead of DyD ¼ 2Γe,

11 as in
our case, Γe is not Hermitian, with the off-diagonal terms accom-
modating all coupling interactions, far-field and near-field. A
similar approach is also adopted in other relevant recent publica-
tions of the literature, such as Refs. 23 and 28, if one groups near-
and far-field coupling effects in a single matrix.

The restriction imposed by Eq. (4a) translates as follows for all
diagonal and off-diagonal elements:

jdnj ¼
ffiffiffiffiffiffiffiffiffi
2γe,n

p
, (5a)

κ*
mn þ κnm ¼ dmd

*
n, n = m, (5b)

with n, m ¼ 1, 2, . . . , N . By Eq. (4b) and by expressing c and dn as
c ¼ jcj e jfc and dn ¼ jdnj e jfd,n , we derive the following restriction:

fd,n ¼
fc + π

2
: (6)

We continue with fd,n ¼ (fc � π)=2, noting that equivalent results
are also obtained with other sign selection, provided that minor
adjustments are made to the subsequent equations. Hence, the off-
diagonal elements of Eq. (5b) are written as

κ*
mn þ κnm ¼ jdnkdmj, n, m ¼ 1, 2, . . . , N , (7)

as dm and dn are in phase. We note that we exclusively consider
normally incident plane waves as excitation. For oblique incidence,
dm and dn would have to acquire a phase difference related to the
angle of incidence, the distance between resonators m and n, and
the operating wavelength.28 The aforementioned restrictions will be
also used in the upcoming section to derive the coupling coeffi-
cients κmn and κnm.

III. COUPLING BETWEEN RESONATORS IN THE
PRESENCE OF RADIATION LOSSES

To form the system of equations described in Eq. (1), we must
calculate the resonator parameters, i.e., the resonance frequencies

and decay rates (intrinsic and external) as well as the coupling coef-
ficients between resonators. To calculate these parameters, we
conduct single-resonator and pairwise FEM eigenfrequency simula-
tions. In all FEM eigenfrequency simulations, radiation losses are
inherently present for metasurfaces that couple to an normally inci-
dent plane wave. In Ref. 25, the coupling coefficients are derived
for the case of two lossless resonators; hence, they assume purely
imaginary values κmn ¼ jjκmnj, κnm ¼ jjκnmj and quantify the fre-
quency splitting that occurs due to coupling. In this work, we will
derive generalized coupling coefficient expressions that include the
contribution of the inherent radiation losses.

To that end, we consider two weakly coupled resonators in the
presence of radiation losses and form the CMT system of equations
described in Sec. II by Eqs. (1)–(7). In Ref. 25, the CMT equations
are derived by assuming weak coupling between the resonators, i.e.,
jκ12j � ω1 and jκ21j � ω2. Under weak coupling, the time depen-
dence is only weakly perturbed, and coupling will affect time evolu-
tion when the uncoupled resonant frequencies are close to each
other.25,29 Under these conditions, the coupling terms can be intro-
duced as in Eq. (1), in the form of κmnAn, with high accuracy. We
note that weak coupling is related to the form of coupled equations
and not the coupling coefficient calculation method, frequency
regime, or intended application. Our approach is applicable to the
same range of coupling coefficient values, as compared to those of
relevant references,21,23,28 thus being appropriate to describe the
same level of resonator interaction. Equation (7) now reads
κ*
21 þ κ12 ¼ jd1kd2j, leading to the following restrictions on the

real and imaginary parts of the coupling coefficients:

<{κ21}þ <{κ12} ¼ jd1kd2j, (8a)

={κ12} ¼ ={κ21}: (8b)

We observe that κ12 and κ21 have equal imaginary parts,
whereas the real parts are not necessarily equal. We note that if the
resonators have no radiation losses, jd1kd2j would be equal to zero,
and then the restriction imposed in Ref. 25 would be satisfied,
<{κ21} ¼ �<{κ12} and ={κ12} ¼ ={κ21}, i.e., κ21 ¼ �κ*

12. The
restriction κ21 ¼ �κ*

12 is valid for purely imaginary coupling coef-
ficients as well.

As a next step, we revisit Eq. (1) for the case of two weakly
coupled resonators with only radiation losses included and set the
incident wave sþ equal to zero. We highlight that even though our
full system described by Eq. (1) is lossy, with only Eq. (4c) valid
among Eqs. (4a)–(4c), the deduction of the coupling coefficients in
our analysis is based on the auxiliary problem of pairwise coupled
resonators with intrinsic losses switched-off, for which all
Eqs. (4a)–(4c) apply. We form the system matrix and set its deter-
minant to zero to extract the natural frequencies of the coupled
system and obtain a non-trivial solution,25

j(ω� ωe,1)þ γe,1 κ12

κ21 j(ω� ωe,2)þ γe,2

� �����
���� ¼ 0, (9)

where ωe,n are the angular resonance frequencies assuming only
external losses. A polynomial of second order in terms of the
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angular frequency ω is obtained,

ω2 � Hω� G ¼ 0, (10)

with G ¼ �ωe,1ωe,2 þ γe,1γe,2 � κ12κ21 � jωe,1γe,2 � jωe,2γe,1 and
H ¼ ωe,2 þ ωe,1 þ jγe,1 þ jγe,2. The coupled angular frequencies
(ωþ

c and ω�
c ) are derived in terms of the uncoupled frequencies, the

decay rates of the uncoupled resonators, and the coupling coeffi-
cients by Eqs. (11a) and (11b),

2ωþ
c ¼ H þ

ffiffiffi
Δ

p
, (11a)

2ω�
c ¼ H �

ffiffiffi
Δ

p
, (11b)

with Δ ¼ H2 þ 4G being the discriminant. We subtract Eq. (11b)
from Eq. (11a) and solve for the product of the coupling coeffi-
cients κ12κ21,

κ12κ21 ¼ Δωu

2

� 	2

� Δωc

2

� 	2

, (12)

with Δωu ¼ (ωe,1 þ jγe,1)� (ωe,2 þ jγe,2) and Δωc ¼ ωþ
c � ω�

c . We
note that the coupled angular frequencies ωþ

c , ω
�
c are complex.

This equation is similar to the one derived in Ref. 25, with the criti-
cal addition of the external decay rate terms of each uncoupled res-
onator to account for radiation losses. The coupling coefficients are
also complex, with the real part related to radiation losses.

By using Eqs. (8a) and (8b), the left side of Eq. (12) is written
as �<{κ12}

2 � L<{κ12}�=2{κ12}� j={κ12}L, with L ¼ �jd1kd2j.
By equating the real and imaginary parts of Eq. (12), two equations
are formed. The equation related to the imaginary part dictates that
the imaginary part of κ12 is equal to

={κ12} ¼ �= Δωu

2

� 	2

� Δωc

2

� 	2
( )


L: (13)

The equation related to the real part is a second-order polynomial
in terms of <{κ12},

<{κ12}
2 þ L<{κ12}þ F ¼ 0, (14)

with

F ¼ =2{κ12}þ < Δωu

2

� 	2

� Δωc

2

� 	2
( )

: (15)

The roots of Eq. (14) are the real parts of κ12 and κ21. Since
Eq. (8a) was used to derive Eq. (14), by setting <{κ12} equal to
either of the two roots of Eq. (14), <{κ21}, can be equivalently
determined either as the other root of Eq. (14) or by applying
Eq. (8a). We note that <{κ12} and <{κ21} are interchangable,
leading to the same CMT response, as the outgoing wave of Eq. (3)
exclusively involves the sum κ12 þ κ21 and product κ12κ21.
Equations (14) and (13) provide closed-form expressions to

determine the real and imaginary parts of the coupling coefficients
of a pair of weakly coupled resonators.

IV. CALCULATION OF RESONATOR PARAMETERS

A. Single-resonator parameters: Intrinsic and external
Q-factors and decay rates

We carry out single-resonator eigenfrequency FEM simula-
tions to determine the intrinsic and external resonator parameters
that feed Eq. (1). The external decay rate is calculated by switching
off the intrinsic losses; hence, only radiation (external) losses
remain. To that end, we impose perfect electric conductor (PEC)
boundary conditions on all metal surfaces and assign a real value
to the dielectric constant. The intrinsic resonator parameters
cannot be directly calculated by an eigenfrequency FEM simulation,
as the external losses cannot be artificially switched off. For this
purpose, we first calculate the total Q-factor, including all loss
mechanisms, i.e., dielectric, conductor, and external losses.
Conductor losses are considered on the metal resonators by substi-
tuting the PEC boundary conditions with transition boundary con-
ditions (TBCs) to model the finite metal conductivity. Periodic
boundary conditions (PBCs) are imposed on all side boundaries to
model the infinite periodic arrangement. The external (Qe,n) and
total (Qt,n) Q-factors are calculated as30

Qe=t,n ¼
<(ωe=t,n)

2=(ωe=t,n)
: (16)

The external (γe,n) and total (γt,n) decay rates are then calculated as

γe=t,n ¼
<(ωe=t,n)

2Qe=t,n
: (17)

The intrinsic decay rate (γi,n), attributed only to conductor and dielec-
tric losses, is retrieved from the total and external decay rates as

1
γi,n

¼ 1
γt,n

� 1
γe,n

: (18)

The external and intrinsic decay rates and resonance frequencies are
calculated for each resonator type and will be used to feed the CMT
system of equations and subsequently calculate the metasurface
response.

B. Coupling coefficients

We will examine the effect of resonator coupling by consider-
ing benchmark examples of metal- and dielectric-based resonator
pairs. To apply Eqs. (14) and (13), we determine the coupled
angular frequencies, ωþ

c and ω�
c , by pairwise eigenfrequency FEM

simulations with only external losses included. The computational
layout is identical to the single-resonator eigenfrequency simulation.

We first consider a split-ring-resonator (SRR) MSA, with two
SRRs of radii r1 ¼ 1:475 mm and r2 ¼ 1:525mm, oriented along
the x-axis and separated by a distance of Dx . The SRR MSA is
arranged on a PEC-backed FR4 dielectric substrate of thickness
h ¼ 1:6 mm and εr ¼ 4:3(1� j0:025). The SRR ring width is
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l ¼ 0:3 mm and the gap is g ¼ 0:4 mm. A 3D schematic of the SRR
MSA is shown in Fig. 1, along the main SRR geometric features.

We vary the distance Dx between the SRRs in the range
Dx ¼ [3:5, 5:2] mm and calculate the coupling coefficients κ12 and
κ21 by Eqs. (15) and (13). The real and imaginary parts of κ12 are

plotted in Fig. 2(a), varying the distance Dx . In this example,
<{κ12} � <{κ21}; hence, we plot only <{κ12}. We observe that, the
real part of the coupling coefficient, which quantifies radiation
losses, gradually decreases as the distance between the SRRs
increases, experiencing small changes of about 0.6 GHz among the
largest and smallest distance. The imaginary part experiences
greater variation. As the distance increases, the imaginary part also
decreases, with the imaginary part at Dx ¼ 5:2 mm being about
one-eighth of the corresponding value at Dx ¼ 3:5 mm.

The coupling of SRRs depends not only on the distance
between them but also on their relative orientation. Hence, we con-
sider a different orientation of the two SRRs by placing them along
the y-axis at distance Dy , with the other geometric parameters
retained, as shown in the inset of Fig. 2(b). The real and imaginary
parts of the coupling coefficient κ12 are also plotted in Fig. 2(b) by
varying Dy in the same range. In this case, it is <{κ12} � <{κ21}
similar to the previous orientation. We observe that the imaginary
part assumes considerably lower values than those of the horizontally
placed SRRs; hence, vertical orientation results in weaker coupling,
which is anticipated for this SRR orientation. At the distance
Dy ¼ Dx ¼ 4 mm, the vertically placed SRRs experience weaker cou-
pling by a factor close to five. The real parts are similar in both cases.

To show the versatility of our approach, we also consider a
benchmark example of two high-index dielectric-cube resonators of
relative permittivity εr ¼ 115� j0:92 arranged on a PEC plate,

FIG. 1. 3D schematic of the 2� 1 horizontally placed SRR-MSA. Dx is the dis-
tance between the centers of the two SRRs.

FIG. 2. Real and imaginary parts of the coupling coefficient vs the distance (a)
Dx and (b) Dy for a 2� 1 (a) horizontally and (b) vertically placed SRR-MSA.

FIG. 3. Real and imaginary part of the coupling coefficient vs the distance Dx
for a 2� 1 dielectric-cube MSA with the (a) x- and (b) y-polarization-excited
coupled-resonator mode.
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acting as isotropic Mie-based MSAs.31 The dielectric cubes are
embedded in a 2Dx � Dx environment, separated by distance Dx ,
and are of side length L1 ¼ 2 mm and L2 ¼ 2:1 mm, shown as
insets in Fig. 3. Two sets of modes are supported in a system of
two coupled dielectric cubes, each excited by an x- and y-polarized
incident wave, respectively. We calculate the coupling coefficient
for each case, vary Dx between 4.5 and 7.5 mm, and plot the real
and imaginary parts in Figs. 3(a) and 3(b). We observe that the
imaginary part of the coupling coefficient is considerably stronger
for y-polarization coupled-mode, while it remains almost constant
for x-polarization. We also note that while the real parts of κ12 and
κ21 are equal to each other for x polarization, they do not coincide
in the case of y polarization, albeit both satisfy the relation
<{κ12}þ <{κ21} ¼ jd1kd2j.

V. VALIDATION OF THE CMT FRAMEWORK

We validate the proposed framework by using the CMT to cal-
culate the response of certain benchmark examples. We consider
the SRR and dielectric-cube MSA of Sec. IV and compare the CMT
results to FEM spectral simulations of the entire supercell. We also
consider a 4� 1 periodic multi-element SRR MSA to demonstrate
the extensibility of our formulation toward larger and more complex
configurations, where not all resonators are first-nearest neighbors.
In all cases, jκ12j is roughly two orders of magnitude below ω1 and
ω2, where the CMT is shown to exhibit high accuracy. In all exam-
ples, both the real and imaginary parts of the coupling coefficients
are needed to accurately replicate the FEM response.

A. 2 × 1 horizontally placed periodic multi-element
SRR MSA

We first consider the horizontally placed SRR MSA with
Dx ¼ 4:8 mm. The CMT and FEM results are in excellent agree-
ment, as shown in Fig. 4.

B. 2 × 1 vertically placed periodic multi-element SRR
MSA

We also validate the CMT results against FEM simulations for
the vertically placed SRR MSA with Dy ¼ 4 mm. We calculate

absorbance via CMT and FEM and compare the results in Fig. 4.
An excellent agreement is attained with both resonances accurately
recovered.

C. 2 × 1 dielectric-cube MSA

As a last validation step, we compare CMT results to FEM
simulations of the dielectric-cube MSA, considering Dx ¼ 6:5 mm,
for both an x- and y-polarized incident wave. An excellent agree-
ment is observed for both polarizations, as shown in Fig. 5.

D. 4 × 1 horizontally placed periodic multi-element
SRR MSA

We consider a 4� 1 SRR-MSA with all SRRs placed along the
x-axis and of radii [r1, r2, r3, r4], with r1 ¼ 1:425 mm,
r2 ¼ 1:475 mm, r3 ¼ 1:525 mm, and r4 ¼ 1:425 mm. In this

FIG. 4. Absorbance vs frequency of both a 2� 1 horizontally and vertically
placed SRR-MSA by the CMT and FEM.

FIG. 5. Absorbance vs frequency of a 2� 1 dielectric-cube MSA, via CMT and
FEM, for an x- and y-polarized incident wave.

FIG. 6. Absorbance vs frequency for a 4� 1 SRR-MSA, calculated by the
CMT and FEM.
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example, not all resonators are nearest neighbors. We first deter-
mine the CMT response by taking into account the coupling
between all pairs of resonators, i.e., first-nearest neighbors r1-r2,
r2-r3, r3-r4, r4-r1 and second nearest neighbors r1-r3 and r2-r4, with
all coupling coefficients assuming complex values. The results are
shown in Fig. 6, and an excellent agreement is observed. As a next
step, we consider complex coupling coefficients only for the first-
nearest neighbors and purely real coupling coefficients for resona-
tors that are placed further apart. The real parts of the coupling
coefficients are required for energy-conservation, following
Eq. (5b). In this case, the pairwise eigenfrequency simulations are
performed only for the first-nearest neighbors. The real part of the
coupling coefficients of the remaining pairs is approximated as
jdmjjdnj=2, with the required quantities already available by the
single-resonator simulations. The expression jdmjjdnj=2 is derived
by assuming that κmn and κnm are purely real and equal to each
other in Eq. (7). In Ref. 21, a similar expression is used for the far-
field coupling between resonators m and n, introduced as the off-
diagonal terms of the decay rate matrix. We note that in our for-
mulation, the coupling coefficient (and subsequently its real part)
incorporates all coupling effects; however, for resonators that are
further apart, near-field coupling is expected to be less prominent.
We also note that the real parts of the coupling coefficients are not
in general equal to each other; hence, equating the real parts of the
coupling coefficients may be an additional source of inaccuracy in
some cases. The absorbance, which is calculated by assuming
complex coupling-coefficient values only for the first-nearest neigh-
bors, is also shown in Fig. 6. A better agreement is observed when
all coupling coefficients assume complex values, hence fully
accounting for all coupling mechanisms. However, for larger con-
figurations, where performing eigenfrequency simulations across all
pairs of resonators may become considerably time-consuming, this
alternative approach may provide a faster though approximate
result.

VI. SYNTHESIS OF AN OPTIMIZED MSA

The CMT generally offers valuable insight into the working
principle of the metasurface and the coupling between resonators.
However, CMT may be additionally used as a fast and computa-
tionally efficient method to synthesize metasurfaces of a desired
functionality. To that end, as a first step, we form a library of the
resonator parameters (resonance frequency, external and intrinsic
decay rates, and Q-factors) for different types of resonators.
Coupling coefficients between all resonator-type combinations are
also included in the library. Once the resonator parameters and
coupling coefficients are determined, we synthesize the desired
metasurface by solving the CMT system of equations for different
parameter sets. An optimized configuration is obtained by combin-
ing the CMT solver with an optimization algorithm.

We consider a 2� 3 SRR-MSA supercell, with two and three
SRRs oriented along the x- and y-axis, respectively. The 2� 3 SRR
MSA is used to highlight the benefits of our formulation within a
more complex and realistic test case. We let the SRRs assume three
distinct values r1 ¼ 1:475 mm, r2 ¼ 1:525 mm, and r1 ¼ 1:575 mm
with the ring width and the SRR gap retained. We first validate the
CMT by analyzing an arbitrary 2� 3 configuration and compare it

to full-wave simulations of the entire supercell. The arbitrary con-
figuration layout is as follows:

Li ¼
r3 r1
r2 r3
r3 r3:

2
4

3
5: (19)

As a next step, we obtain an optimized layout by combining
genetic-algorithm optimization with the CMT solver. The design
objective is to maximize the absorbance over the largest attainable
bandwidth. We set the minimum acceptable absorption level to
A ¼ 0:8. The optimized configuration layout is as follows:

Lo ¼
r3 r3
r2 r2
r1 r1,

2
4

3
5, (20)

which turns out to be 1� 3 MSA. We compare the CMT results of
the initial and optimized configurations against the FEM results of
the entire supercell (Fig. 7), with an overall very good agreement
observed in both cases. The optimized MSA exhibits absorbance
higher than A ¼ 0:8 over a 0.83 GHz range, whereas the initial
design features absorbance A . 0:8 in a considerably narrower
band of 0.29 GHz. Average absorbance calculations over the 9.1–
10.1 GHz band also corroborate that the design obtained by the
CMT-based optimization features better performance than the
initial one, with the average absorbance of the initial and optimized
design being Avg{Ai} ¼ 0:728 and Avg{Ao} ¼ 0:86, respectively.

VII. DISCUSSION ON COMPUTATIONAL
REQUIREMENTS

The proposed CMT methodology is a computationally efficient
alternative to full-wave simulations for the analysis and synthesis of
large-scale metasurfaces. The CMT requires smaller single-resonator
and pairwise eigenfrequency simulations to construct the resonator-
parameter and coupling-coefficient library. The CMT system of

FIG. 7. Absorbance vs frequency for a 2� 3 SRR-MSA, calculated by the
CMT and FEM. Both the initial arbitrary and the optimized configurations are
included.
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equations may be then solved very fast for multiple frequencies or
different configurations, as the degrees of freedom solved for are
extremely low, equal to the number of resonator modes. Full-wave
spectral simulations of the entire metasurface supercell, on the other
hand, are computationally expensive especially for larger metasurfa-
ces and must be performed multiple times across several frequencies
to obtain a spectral response. Hence, full-wave spectral simulations
entail not only much higher numbers of DoFs but also a consider-
ably higher number of computationally expensive simulations.
Moreover, they must be recomputed without prior knowledge for
different arrangements of resonators.

We, therefore, illustrate the advantages of our proposed formula-
tion in terms of time and computational requirements with the follow-
ing example. The analysis of a 2� 3 MSA configuration, synthesized
by three different in size resonators, requires six single-resonator eigen-
frequency simulations, three with only external losses and three with
all losses included. Each single-resonator eigenfrequency simulation
needs about 800 000 degrees of freedom (DoFs) for these specific
problems. We also form three coupling-coefficient matrices, each
quantifying the coupling between resonator types, oriented along the x
(κx), y (κy) and diagonal direction (κd) for the considered configura-
tion. Each coupling-coefficient matrix is of dimensions 3� 3 since we
consider three different-in-size SRRs to synthesize the MSA. To fill
these coupling-coefficient matrices, for each pair of resonator types i
and j and for each relative orientation, we perform a pairwise eigenfre-
quency simulation and obtain the coupling-coefficient matrix elements
κx=y=d(i, j) by Eqs. (13)–(15). The κmn elements of matrix Γe will be
filled using matrices κx=y=d according to the type and orientation of
the resonators. The κnm elements of matrix Γe in all cases satisfy
Eqs. (8a) and (8b). Each 3� 3 coupling-coefficient matrix requires up
to nine pairwise eigenfrequency simulations, depending on the struc-
ture’s symmetry. By performing up to 27 pairwise eigenfrequency sim-
ulations (nine for each orientation), with each simulation having about
870 000 DoFs, we form the library for this example. Each single-
resonator and pairwise eigenfrequency simulation requires 3 min on a
high-end XEON server. Once the library set is obtained, the CMT
system of equations is solved in less than a second for each metasur-
face layout. For the example under consideration, the computation of
all CMT parameters requires about 1.65 h. A full-wave solver needs
about 1 150 000 DoFs and 6 min for a single-frequency calculation;
thus, it will require about 5 h to compute the spectral response of a
given 2� 3 MSA layout across 50 frequencies. The advantages of our
formulation are even more evident during the synthesis process. The
optimized configuration was obtained via the CMT-based optimiza-
tion after 30 iterations, as the average relative change in the penalty
fitness value was less than 10�10. The CMT needs a few seconds to
perform all iterations, provided the 1.65-h overhead, whereas the full-
wave FEM solver would need about 6 days. As the size and set of avail-
able resonators increase, the full-wave FEM simulations are expected
to become prohibitive. Hence, the CMT solver provides a valuable and
time-efficient semi-analytical tool that may be used in conjunction
with any optimization algorithm for the fast synthesis of metasurfaces.

VIII. CONCLUSION

We proposed a CMT formulation for the fast analysis and
synthesis of metasurface structures. Instead of simulating the entire

metasurface supercell by a full-wave solver, we construct a small
system of equations, one for each resonator mode, fed by simpler
and faster single-resonator and pairwise eigenfrequency simula-
tions. As radiation losses are inherent in many practical applica-
tions, we derive closed-form expressions for the coupling
coefficients between two weakly coupled resonators by properly
considering radiation losses. Such analytical expressions may also
provide greater insight into the underlying physics. We validated
our formulation across different absorber configurations and syn-
thesized an optimized larger microwave absorber to demonstrate
the benefits of the CMT on a computationally challenging example.
Our method offers a fast, computationally efficient, and accurate
tool for synthesizing metasurfaces and may be extended toward
two-port or multi-port applications, such as polarization convert-
ers, which would require two ports for a metal-backed reflective
metasurface (one for the TE and one for TM polarization) and four
ports for a non metal-backed transmissive metasurfaces.
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