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Quasinormal mode theory for multiresonant metasurfaces with superwavelength periodicity
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A multimode framework that can be utilized in the analysis and design of metasurfaces with sub- and
superwavelength periodicity involving dielectric, plasmonic, or 2D materials is presented. The numerical tool
is based on the concept of quasinormal modes (QNMs), which are used to efficiently reconstruct the structure’s
electromagnetic response. It is general and can be applied to any non-Hermitian periodic resonant system
irrespective of pitch value, incidence angle, frequency regime, material composition, and type of supported
resonance, including Fabry-Pérot modes, whispering-gallery modes, localized plasmonic resonances and surface
states, lattice resonances, dielectric Mie modes, etc. The framework is employed to study two contemporary
metasurface structures involving 2D materials: (i) a graphene-based plasmonic metasurface that supports tightly
confined surface plasmons which form Fabry-Pérot resonances and (ii) a dielectric metasurface that supports
Mie-like resonances and a bound state in the continuum (BIC), enhanced with a transition-metal dichalcogenide
bilayer. The ability of supporting sharp resonances through quasidark or qBIC modes as well as the tuning of
their resonant frequency via electrical gating are investigated. In each case, the QNMs are retrieved using a
modified finite-element scheme that can handle periodic systems with dispersion. They are then fed to the modal
framework to specify the spectral response for the zeroth and higher diffraction orders. The results are validated
by comparing against time-harmonic finite-element simulations, showing excellent agreement.
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I. INTRODUCTION

Optical metasurfaces (MSs) have received considerable
scientific interest for more than a decade now [1–3], mainly
due to their ability to strongly interact with incident radia-
tion despite being electrically thin. They have been used to
efficiently control the propagation of light and its properties
(direction, polarization, wavefront), mainly in free-space [2,3]
but also in guided-wave structures [4]. Towards the goal of
efficient and tunable control of light, 2D photonic materials
(graphene, transition metal dichalcogenides (TMDs), MX-
enes, etc.) are being incorporated in MSs for their unique
linear and nonlinear properties, which can be additionally
externally tuned [5]. Importantly, the infinitesimal thickness
of 2D material retains the advantage of an ultrathin composite
structure.

The exploding study of metasurfaces and their applications
necessitates efficient numerical tools to help with analyz-
ing and designing such contemporary periodic systems. MSs
are frequently studied with general-purpose computational
methods such as the finite-difference time-domain or the
finite-element method (FEM). However, such approaches do
not provide the desirable physical intuition needed for probing
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the underlying physics and pursuing optimal designs. Addi-
tionally, they require significant simulation times, especially
when sharp resonances are involved, leading to long energy
storage (time domain) or fine frequency resolution to unveil
their narrow linewidths (frequency domain). On the contrary,
modal techniques aim to examine light-matter interaction at
its core, focusing on the pole structure of the system un-
der study and allowing for physics-informed designs that
efficiently exploit the supported resonances [6–8]. In many
instances, having a clear view of the supported resonances has
proven quite useful in the design of resonant systems [6,9–11].
However, developing such modal techniques in contemporary
photonic systems with loss, dispersion, and significant radia-
tion damping (leakage) is not a trivial task.

Here, we contribute toward this direction by present-
ing a modal framework for resonant metasurfaces with
superwavelength periodicity that is based on quasinormal
modes (QNMs), i.e., the modes that are supported by non-
Hermitian systems. The framework allows for the treatment
of any general periodic resonant photonic system, irrespec-
tive of the frequency regime (visible, near infrared, THz,
microwaves), material composition (dielectrics, metals, 2D
materials), or type of supported resonance, be it plasmonic
(i.e., bound to a surface or interface), Fabry-Pérot (FP),
Mie, bound states in the continuum, or other. The accuracy
(compared with other simulation methods or even exper-
iments) and efficiency (in terms of speed reduction) of
QNM-based techniques [12,13] has been already proven in
guided-wave systems [14], plasmonic nanoparticles [15], and
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metasurfaces (subwavelength pitch) with plasmonic [10] and
2D materials [9].

In this paper, we showcase how the developed QNM
framework can be used to study metasurfaces with super-
wavelength pitch through two examples that involve the
entire gamut of plasmonic, photonic, and Mie resonances.
Combining the resonant scatterers of metasurfaces with the
superwavelength periodicity of gratings can lead to even
richer phenomena, since higher diffraction orders (DOs) allow
for further control of light by opening different propagation
channels. This may lead to advanced linear, nonlinear, or
quantum applications [16]. The examples are carefully se-
lected to refer to contemporary concepts such as dark modes
and (quasi)bound states in the continuum (BICs and qBICs)
[3,17,18] in systems that are capable of electrical tunability
and advanced functionalities (e.g., nonlinear response and
light emission). Specifically, we apply the proposed frame-
work in a graphene-based MS which supports plasmonic
modes, and in a dielectric (silicon-rich nitride) MS, enhanced
with a transition-metal dichalcogenide bilayer, which supports
Mie-like modes and a BIC. The selected 2D materials can
be tuned electrically, they are highly nonlinear, and they ex-
hibit the ability for light amplification and emission. Due to
the superwavelength pitch, higher diffraction orders become
propagating for different wavelengths or incidence angles. In
both cases, the spectral response is reconstructed by the QNM
framework for each diffraction order and compared against
full-wave FEM time-harmonic simulations, showing excellent
agreement. Time-harmonic FEM simulations were chosen for
the verification process, as the same mesh can be used to
ensure a fair comparison between the two approaches. To
minimize sources of possible numerical error, we have taken
care to allow for a sufficiently dense discretization (verified
by the convergence of the time-harmonic FEM results), retain
a sufficient number of terms in the QNMs framework (verified
by gradually incorporating additional modes and checking the
convergence), and use robust boundary conditions (perfectly
matched layers) for the truncation of the computational do-
main. Note that agreement in the numerical results of QNM
frameworks with other computational methods, including the
FEM, have been also reported in the literature [12].

The rest of the paper is organized as follows. In Sec. II,
we build upon mature concepts and present the aspects of
the proposed QNM framework, i.e., the treatment of periodic
systems with 2D materials and higher DOs. In Sec. III, we
focus on the analysis of a graphene-based MS that mainly
supports plasmonic modes, while in Sec. IV we examine a
dielectric system that supports Mie-like resonances and a BIC.

We calculate the spectral response of these two MSs and also
investigate, interpret, and discuss interesting features that they
exhibit. Finally, Sec. V provides concluding remarks.

II. QNM FRAMEWORK FOR PERIODIC SYSTEMS
WITH PROPAGATING DIFFRACTION ORDERS

It is commonly accepted that the QNMs, Ẽm(r), supported
by a non-Hermitian cavity form an orthonormal basis that can
be used to decompose the scattered field Esct (r, ω) through

Esct (r, ω) =
∑

m

am(ω)Ẽm(r), (1)

where am(ω) are expansion coefficients that depend on the
resonator (materials, geometry) and the form of the exci-
tation [6]. The tilde symbol in this paper is reserved to
denote modal quantities (eigenvectors, i.e., QNMs, and their
respective eigenvalues, i.e., complex resonance frequencies).
Equation (1) is accurate (complete) when all QNMs are con-
sidered [19]. This cannot be strictly accomplished, but Eq. (1)
can still hold quite accurately, particularly when nonphysical
modes that emerge in the frequency range of interest due to
the truncation of the computational space with open boundary
conditions [20] or perfectly matched layers (PMLs) [15] are
additionally included.

In periodic systems, one typically examines a single unit
cell by utilizing the Bloch-Floquet theorem which states that
the total electric field E(r) is periodic [21,22], i.e., E(r) =
e(r) exp{− jk0η · r‖}, where k0 is the free-space wave number,
η is extracted from the Floquet wave vector as kF = k0η, and
e(r) is the periodic electric field envelope. Then, Eq. (1) is
expressed as

Esct (r, ω) =
∑

m

am(ω)ẽm(r) exp{− jk̃mη · r‖}, (2)

which involves only the spatial envelope of the QNMs
and their (complex) wave numbers k̃m = ω̃m/c0. The en-
velopes ẽm(r) can be retrieved with a FEM eigenvalue solver.
However, to correctly model oblique incidence in periodic
structures, one has to use a modified Helmholtz equation,
expressed in terms of the spatial envelope, e(r), rather than
the full field, E(r). Although nontrivial, this process is well
established in the literature [9,10,23,24] (sometimes referred
to as ω-γ formulation [24]) and it is utilized in this work. In
addition, we need to carefully normalize the spatial envelopes
of the QNMs [6,9,10,13,15]. Specifically, starting from the
biorthogonality condition for the spatial envelopes of the
QNMs [9,10], one can show that ẽm(r) and h̃m(r) should be
normalized as

∫∫∫
V

[
ẽ−m · ∂{ωε}

∂ω
ẽm − h̃−m · ∂{ωμ}

∂ω
h̃m − ẽ−m · j

∂σs

∂ω
ẽmδs − η · 1

c0
(h̃−m × ẽm + ẽ−m × h̃m)

]
dV = 1, (3)

where ẽ−m and h̃−m denote left eigenvectors (left QNMs),
which are necessary to ensure biorthogonality [10,19,25], and
δs(r − r0) is a surface Dirac function, nonzero only on the 2D
material surface denoted by r0. For the rest of the paper, all
QNMs are considered as having been normalized via Eq. (3).

Note that we use the the so-called PML normalization, i.e., we
truncate the computational domain via PMLs and perform the
integration of Eq. (3) inside the artificial domains as well [26].
Finally, the derivatives of ε(ω), μ(ω), and σs(ω) are evaluated
at the complex frequency ω = ω̃m.
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Depending on the involved materials (bulk or sheet, with
or without dispersion) and the excitation type (point dipole,
plane wave, etc.), the expansion coefficients am(ω) acquire
different expressions [9,10,15,26]. Here, we will consider
both bulk and sheet materials with multipole Drude-Lorentz
dispersion and plane-wave illumination. In Ref. [9], a similar
equation is presented but for a single scatterer. In the same
work, it was discussed how the expansion coefficients emerge
from the scattering form of the curl Maxwell equations, uti-
lizing the expansion of Eq. (1) and biorthogonality. Here, we
give its equivalent for a periodic system

am(ω) = 1

ω̃m − ω

∫∫∫
V

[ẽ−m · ωε0(ε∞ − εb)eb

+ ẽ−m · ω̃mε0(εr (ω̃m) − ε∞)eb

+ ẽ−m · jσs(ω̃m)ebδs]dV, (4)

where we have used the general dispersion expressions

εr (ω) = ε∞

(
1 −

N∑
i=1

ω2
p,i

ω2 − ω2
0,i − jωγi

)
, (5a)

σs(ω) = − jωε0

N∑
i=1

ω2
p,i

ω2 − ω2
0,i − jωγi

, (5b)

for bulk and sheet materials, respectively. In Eq. (4), we de-
note with eb(r) the spatial envelope of the background field,
i.e., the field in the absence of the cavity consisting of the
incident field, ein(r), plus the reflected field, er (r), from the
substrate (if any), so eb(r) = ein(r) + er (r).

To calculate the response of the MS, we need the total
full field, i.e., Etot (r) = Esct (r) + Eb(r). Then, it is straight-
forward to calculate the absorbed power as

Pabs = 1

2

∫∫∫
V

Re{ jωε0(εr − 1) + σsδs}Etot · E∗
totdV, (6)

with the integration taking place inside the cavity. To calculate
the reflection and/or transmission coefficients, we need the
reflected and transmitted wave outside the cavity, which may
be obtained through Eq. (2). Although the QNM expansion is
not strictly complete outside the cavity [19], Eq. (2) can still
be used and this approach has been shown to give very good
results [9,10].

Besides specular reflection and transmission in periodic
metasurfaces with subwavelength pitch, the proposed
framework can capture higher diffraction orders that
become propagating in resonant metasurfaces with
superwavelength pitch. Let us assume the general case
of an MS that is periodic along the x and y directions.
The MS is illuminated from the top by an oblique plane
wave with angles of incidence ϑi (polar angle) and φi

(azimuthal angle). Then, the wave vector of the incident
wave is ki = k0n1(sin ϑi cos φix̂ + sin ϑi sin φiŷ − cos ϑiẑ) =
α0x̂ + β0ŷ + γ0ẑ, and η = n1(sin ϑi cos φix̂ + sin ϑi sin φiŷ).
Now, denoting with �x and �y the pitch (lattice
constant) across the x and y directions, respectively,
the parallel-to-the-metasurface wave-vector components
are αm = α0 + m(2π/�x ), βn = β0 + n(2π/�y) for any

diffraction channel of order (m, n). This DO becomes
propagating when the normal component of the wave vector
γmn= ± [(k0ni )2−α2

m−β2
n ]1/2 is real, i.e., for (k0ni )2 >

α2
m + β2

n ; here i = {1, 2}, referring to the side of the incidence
or transmission, respectively, and the plus (minus) sign is
used as well for the reflected (transmitted) wave.

Next, let us assume a fictitious plane at z = ±d . Only the
components of the scattered electric field that lie on this plane,
Et

sct (x, y, d ), are necessary for the subsequent calculations (t
stands for tangential). We expand them in 2D Fourier series
(Rayleigh expansion) and find that the respective amplitudes
are

Ek,sct,mn = 1

�x�y

∫∫
S

Ek,sct (x, y, d )e j(αmx+βny)dxdy, (7)

with k = {x, y} and S the surface of the unit cell. For calcu-
lating reflection and transmission to the different diffraction
orders, it is more convenient to use the scattered field in p
(parallel) and s (normal) polarization. Having calculated the
x and y components of the scattered field and making use
of the angles ϑmn = cos−1(±γmn/k0ni ), φmn = tan−1(βm/αn),
with ϑmn measured from the positive z-axis direction to the tip
of the wave vector and the plus (minus) sign corresponding to
the reflected (transmitted) wave, we can write

Ep,sct,mn = cos φmnEx,sct,mn + sin φmnEy,sct,mn

cos ϑmn
, (8a)

Es,sct,mn = sin φmnEx,sct,mn − cos φmnEy,sct,mn, (8b)

respectively. To obtain the amplitude reflection rmn and trans-
mission tmn coefficients, each output polarization should
be associated with the respective input polarization unless
cross-polarization effects are expected. Finally, for the zeroth
diffraction order m = n = 0, note that background reflection
and transmission in the absence of the cavity should be first
added to the scattered field to calculate the respective reflec-
tion and transmission coefficients. For example and for a sin-
gle polarization (p-p or s-s), power transmission coefficients
can be calculated as |t0|2 = |tbg + Esct,0/Ein|2(n2/n1) for m =
n = 0 and |tmn|2 = |Esct,mn/Ein|2|(n2/n1)(cos ϑmn/ cos ϑi )| for
m, n �= 0. Similar expressions stand for power reflection co-
efficients.

III. GRAPHENE METASURFACE WITH PLASMONIC
FABRY PÉROT RESONANCES

As a first example, we will examine an MS consist-
ing of periodically arranged graphene strips lying on a
metal-backed glass substrate [9,27,28], as shown in Fig. 1.
We will focus on THz frequencies where graphene sup-
ports tightly confined graphene surface plasmons (GSPs)
owing to the Drude-like dispersion of its surface conductivity
σs(ω) = − jσ0/(ω − jγgr ). Assuming incidence within the xz
plane, GSPs which are necessarily TM polarized (H ‖ ŷ) will
propagate along the ±x axis and form horizontal FP reso-
nances because of reflection at the graphene edges [9,29]. Due
to its uniformity along the y axis, we can study the system
as a 2D structure. We will simulate a single unit cell with
the boundary conditions shown in Fig. 1(b). The dimensions
are provided in the caption. For this pitch value, higher DOs

245407-3



THOMAS CHRISTOPOULOS et al. PHYSICAL REVIEW B 110, 245407 (2024)

FIG. 1. (a) 3D schematic of the considered MS, with periodically
arranged graphene strips laying on a metal-backed glass substrate. FP
resonances in the low THz band appear due to the supported GSPs
that propagate along the x axis. (b) 2D equivalent unit cell that is
used for the simulations. The geometric parameters of the MS are
L = 5 µm, � = 50 µm, and h = 12.2 µm. The material properties
are ninc = 1, nsub = 1.45, and σ0 = 35.3 mS/ps (μc = 0.3 eV), γgr =
0.025 Trad/s for graphene. The applied boundary conditions are also
shown in the schematic.

will become propagating in the frequency range of interest
(3–6.5 THz) as the incidence angle increases.

We will calculate the response of the examined MS using
the developed framework. To find the QNMs under oblique
incidence, we solve a modified Helmholtz equation that uses
the periodicity vector η = ninc sin ϑix̂, complemented with an
additional equation involving an auxiliary field to capture
graphene dispersion [9]. In Fig. 2(a), we show in the complex
plane some of the obtained modes in the range 3–6.5 THz,
assuming ϑi = 60o. We find not only FP plasmonic modes
(X markers) but also other modes that are located mostly
in the dielectrics (O markers) and spurious modes (� mark-
ers) that represent the branch cuts which appear when a DO
becomes propagating. The distribution of the ẽx component
is included in Fig. 2(a) in some characteristic cases. These
QNMs, along with additional spurious modes (approximately
400), are used to apply the proposed framework. Note that
this large number of modes is needed to obtain a perfect
reconstruction of the full-wave solution [10,13]; the spectral
features are already qualitatively reproduced by including
the few modes of physical origin that are predominantly in-
volved in the process. Absorption and reflection are shown
with red thick solid lines in Figs. 2(b) and 2(c), respectively,
and are compared with time-harmonic FEM simulations (blue
dots), showing excellent agreement. Note that this excellent
reconstruction is observed even for reflection, although, as
stated, the QNM expansion is not strictly complete outside
the cavity. Interestingly, both absorption and reflection are
very low in the spectral vicinity of the TM1 mode. Most
of the incident power in this case is redirected toward the
� = −1 DO, i.e., toward ϑr,−1 = −49o, instead of ϑr,0 = 60o

of the specular direction. This is seen in Fig. 2(d), where
the r−1 coefficient is plotted. This is a very interesting result
that is validated by the full-wave solution, indicating how the
examined MS can be used for, e.g., anomalous beam steering
applications.

Next, the incidence angle is varied to 40o and 0. For
each case, the frequency above which the lowest order DO
(� = −1) becomes propagating is clearly marked in Fig. 2 and

FIG. 2. (a) Pole structure of the MS for oblique incidence (ϑi =
60o). The field distribution (ẽx component) for a few characteristic
QNMs is also included in insets. (b) Absorption and (c) specular re-
flection for normal and oblique incidence. As ϑi deviates from 0, the
resonance frequency of the symmetric TM1 graphene FP resonance
remains practically constant, but the radiation quality factor changes
considerably. The antisymmetric TM2 FP resonance is only excited
for ϑi �= 0. For ϑi ∼ 60o, specular reflection in the spectral vicinity
of the TM1 mode practically vanishes. (d) Reflection of the � = −1
DO. For ϑi = 60o, the incident light is almost completely diverted
towards the � = −1 propagating DO (ϑr,−1 = −49o). All absorption
and reflection curves are calculated using the QNM framework and
validated for ϑi = 60o through time-harmonic plane-wave-scattering
FEM simulations.

corresponds to [30]

λ�,cutoff = ninc(1 ∓ sin ϑi )
�

|�| . (9)

Equation (9) is valid for both positive and negative indices �.
We see that the resonance frequencies of the two FP plasmonic
modes remain practically unaffected and only the respective
Q factors are different, as indicated by the peaks (dips) in
absorption (specular reflection) spectrum. Dielectric modes,
on the other hand, shift quite significantly with ϑi, since
the effective length that light travels inside the substrate is
∝ 1/ cos ϑi. Furthermore, note that the TM2 mode cannot be
excited under normal Ex-polarized incidence (dark mode),
since the distribution of the ẽx component is antisymmetric
[inset in Fig. 2(a)]. This is reflected in Qrad → ∞ and is nowa-
days commonly referred to as a symmetry-protected BIC [3].
As ϑi deviates from 0, the TM2 mode is also excited by the in-
cident TM wave. However, there are some additional incident
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FIG. 3. Radiation quality factor (Qrad) of the TM2 mode as
a function of the incident angle ϑi. For ϑi = 0, there exists a
symmetry-protected BIC (dark mode) with infinite Q factor. There
are also accidental BICs that emerge due to destructive interference
in reflection.

angle values at which Qrad diverges to practically infinite
values. In Fig. 3, we plot Qrad for the TM2 mode as a function
of ϑi. For angles 13.4o and 50.8o, Qrad diverges and the TM2

mode cannot be excited. This is not anticipated by symmetry
arguments; rather, it arises due to destructive interference
in the reflected wave which gives rise to accidental BICs
[3,31].

Finally, we will demonstrate the tuning capabilities en-
abled by graphene. By applying an external bias between
graphene and the metal back-plane, we can electrically tune
the surface conductivity of the former by modifying its Fermi
level (σ0 ∝ μc). In effect, this strongly affects the resonant
frequencies and quality factors of the GSP resonances. We
focus on ϑi = 60o and consider moderate values for μc in the
range 0.3–0.4 eV. The results are depicted in Fig. 4. Specifi-
cally, in Figs. 4(a) and 4(b), we include the total quality factor
(Qtot), the radiation quality factor (Qrad), and the resonance
frequency ( f0) of the TM1 and TM2 modes as a function of
μc. We find a linear blueshift for f0 and a suppression of
the quality factor due to the additional radiation for larger μc

values. For the TM2 mode, the change in μc shifts its reso-
nance frequency above the propagation limit of the � = −2
DO, highlighted using dashed lines in Fig. 4(b). When this
happens, the radiation behavior of the mode changes, leading
to a significant suppression of the respective Q factor [see the
characteristic “knee” in Fig. 4(b)]. Tuning of the resonant fre-
quencies and Qs is also seen in the reflection spectra depicted
in Figs. 4(c) and 4(d) for the fundamental and higher DOs,
respectively (note that the � = −2 DO becomes propagating
for f > 6.45 THz and a significant part of TM2 reflection is
toward that DO). On the contrary, dielectric modes are only
marginally affected since they mostly lie on the substrate (see
the resonance around 5.7 THz).

IV. DIELECTRIC METASURFACE WITH A MIE-LIKE
BIC RESONANCE

As a second example, we will examine a dielectric meta-
surface in the near infrared. The considered periodic system is
depicted in Fig. 5. It consists of dielectric [silicon-rich silicon
nitride (SRN)] meta-atoms (wires) lying on a glass substrate.

FIG. 4. Total quality factor, (Qtot) radiation quality factor (Qrad),
and resonance frequency of (a) TM1 and (b) TM2 modes with respect
to the Fermi level of graphene for ϑi = 60o. Both modes experience
a linear blueshift as μc increases. The respective total Q factor is
restricted due to the additional radiation for larger μc values. This
is more evident in the TM2 QNM, where also a different radiation
behavior leads to a strong decrease in Q when the � = −2 DO
becomes propagating (notice the characteristic “knee”). (c) Specular
reflection and (d) reflection towards higher DOs. The findings of
(a) and (b) are clearly observable in the shown spectrum.

This time, no metal backing is present, thus allowing for both
reflection and transmission through the metasurface. This MS
supports Mie-like resonances in the SRN meta-atoms and it is
enhanced with a TMD heterobilayer on top to allow for ad-
ditional functionality, such as second-order nonlinear effects

FIG. 5. (a) 3D schematic of the considered SRN wire metasur-
face, enhanced with a TMD bilayer on top. A defect is introduced
on the top-right corner to allow for the excitation of a Mie-like qBIC
mode. (b) 2D equivalent unit cell that is used for the simulations. The
geometric parameters of the MS are w × h = 250 nm × 220 nm,
wd = hd = 30 nm (unless mentioned otherwise), and � = 700 nm.
The background material properties are ninc = 1 and nsub = 1.45.
The applied boundary conditions are also shown in the schematic.
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TABLE I. Values used for simulations in the Drude-Lorentz
models for SRN and TMD bilayer.

ωp ω0 γ

ε∞ N (Trad/s) (Trad/s) (Trad/s)

SRN 1 1 15 740 5 529 2
2.239 14 270

TMD 1 3 0.0127 1 670 20
0.0775 2 546 70

[32,33], external tunability [34], or light emission [35]. The
geometric parameters are provided in the caption of Fig. 5.
Given the pitch of � = 700 nm and the frequency range of
interest λ0 = 600–1200 nm, higher DOs will become prop-
agating in this case as well. We examine TE polarization
(E ‖ ŷ) and focus on normal incidence. Importantly, we will
demonstrate how a BIC that is supported by the MS can be
excited by introducing a geometric asymmetry [see the inset
of Fig. 5(b)] rather than an asymmetry in the excitation (e.g.,
oblique incidence), as exercised in Sec. III. Regarding the
electromagnetic properties of SRN and the TMD bilayer, we
assume that both are described by Drude-Lorentz functions
[Eqs. (5)] to correctly capture their dispersion. In Table I, we
compile the parameters used to model SRN and the TMD
bilayer [34,36–38].

We simulate a unit cell of the considered dielectric MS and
solve for the supported modes (physical and spurious). We ex-
amine an octave-spanning frequency window from 600 nm to
1200 nm and depict in Fig. 6(a) some of these modes, namely,
Mie-like modes (X markers), spurious modes (� markers) that
represent branch cuts, and also numerous plasmonic modes
(O markers) that accumulate at 740 nm and 1128 nm, respec-
tively; this is a well-reported effect close to a Drude-Lorentz
pole [39]. Omitting the plasmonic modes when reconstructing
the spectral response can have a non-negligible impact, but
mostly in the absorption curve. Using the depicted modes,
as well as additional spurious (PML) modes (approximately
600), we apply the proposed framework and plot in Figs. 6(b)–
6(d) absorption, reflection, and transmission, respectively. We
examine scenarios with (red thick lines) and without (gray
thin lines) a geometric defect consisting of a 30 × 30 nm2

indentation in the upper right corner of the SRN meta-atom.
Time-harmonic FEM simulations (blue markers) are used to
verify the red curves (case with defect). As expected, the small
defect does not significantly affect the response of the MS in
most of the spectrum. However, it allows for the excitation
of the qBIC mode at 1160 nm, resulting in a sharp Fano-
like line shape, due to interference with additional reflection
channels [40].

To further highlight the excitation of the qBIC resonance,
we plot Qrad as a function of the defect size in Fig. 7. The
initially infinite radiation Q factor drops to a few thousands.
The purely vertical magnetic dipole moment (mz) exhibited
by the TE2 mode acquires a horizontal (mx) component that
allows radiation leakage toward the ±z direction. In the inset,
the evolution of the Fano line shape with increasing defect
size is depicted. There is a notable change (blueshift) of the
qBIC resonance frequency and, importantly, in the linewidth.

FIG. 6. (a) Pole structure of the MS with the geometric defect
for normal incidence. Two Mie-like resonances, numerous plasmonic
modes, and two branch cuts can be identified. The field distribution
(ẽy component) of a few indicative modes is also included. (b) Ab-
sorption, (c) reflection, and (d) transmission of the MS (normal,
TE-polarized incidence) with or without the defect. The (q)BIC
around 1160 nm can be only excited when the defect is introduced (a
horizontal, mx , magnetic dipole component develops). (e) Reflection
and transmission of the � = ±1 DOs. In the absence of the defect,
light is symmetrically diffracted whereas the presence of the defect
breaks this symmetry. All absorption, reflection, and transmission
curves are calculated using the QNM framework and are validated
for the defect case by comparing against time-harmonic plane-wave-
scattering FEM simulations (dot markers).

The spectral feature becomes broader and stronger as Qrad

decreases.
We also use Eq. (7) to calculate reflection and transmission

to higher DOs [Fig. 6(e)]. Because of the normal incidence,
� = ±1 DOs become propagating at the same wavelength and,
in the absence of a defect, they both have the same efficiency
(carry the same power). This is depicted in Fig. 6(e) (gray and
black lines). Note, however, that since nsub > ninc, transmis-
sion DOs appear first (for λ < 1 015 nm) and reflection DOs
follow (for λ < 700 nm). On the other hand, for the case with
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FIG. 7. Radiation quality factor (Qrad) of the (q)BIC Mie mode
as a function of the defect size. Due to the defect, the TE2 mode
acquires an mx component in the magnetic dipole moment, allowing
interaction with normally-incident plane waves. This translates into
finite Qrad values; larger defects allow for stronger coupling. Inset:
Spectral response in the vicinity of the (q)BIC resonance for different
defect sizes. A larger defect is associated with a wider linewidth due
to the lower Qrad value.

defects, it is expected that each transmission and reflection
DO will feature a slightly different efficiency (carry a different
power fraction) due to the geometric asymmetry of the SRN
wire. This is indeed verified in Fig. 6(e), both using the QNMs
framework and full-wave FEM simulations.

Finally, we note that the electromagnetic properties of the
TMD heterobilayer can be electrically tuned by utilizing the
Stark effect [34], i.e., a shifting of the energy band to change
the respective band gap via the application of a small static
bias. Equivalently, this means that ω0 in the Drude-Lorentz
model [Eq. (5)] can be externally controlled, shifting the loca-
tion of a Drude-Lorentz pole. For the response of the system,
such an action mainly shifts the respective absorption peak
and only marginally modifies reflection and transmission.
This can be quite interesting in cases where one tries to align
the energy band gap of the TMD with the qBIC resonance
frequency and enhance, for example, stimulated (lasing) or

spontaneous (Purcell enhancement) emission. Likewise, the
sharp line shape of the qBIC mode can be utilized to enhance
nonlinear effects, such as second-harmonic generation [32,33]
(TMDs are not centrosymmetric materials and favor second-
order nonlinearities [41]).

V. CONCLUSION

In conclusion, we have presented and evaluated a modal
framework that allows for the efficient and accurate analysis
of metasurfaces with superwavelength periodicity, capable of
calculating reflection and transmission in specular and higher
propagating diffraction orders as well as absorption. The
framework requires the calculation of the QNMs supported
by the non-Hermitian resonant system through a single eigen-
value simulation of the unit cell and, following an appropriate
normalization, uses these eigenmodes as a basis to expand the
scattered field. It is, thus, very efficient and also very accurate,
as proven by comparing against full-wave time-harmonic sim-
ulations.

The capabilities of the framework have been showcased
by two judiciously selected examples: (i) a graphene-based
metasurface supporting plasmonic Fabry-Pérot resonances at
THz frequencies and (ii) a dielectric metasurface supporting
Mie-type resonances at near-infrared frequencies. The ability
of supporting sharp resonances through quasidark or qBIC
modes and the tuning of their resonant frequency via electrical
gating have been investigated. More generally, the presented
framework can be used to study any periodic resonant system
irrespective of pitch value, frequency regime, material com-
position, and type of supported resonance. It can, thus, prove
very useful in the analysis and design of modern photonic
structures.
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