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Abstract—We theoretically demonstrate the generation of
Kerr microcombs in integrated graphene-clad silicon-nitride slot
waveguide ring resonators. In our work, the graphene monolayer
provides the enabling nonlinearity, by means of its third-order
surface conductivity. We use the Lugiato-Lefever equation frame-
work, modified to incorporate the frequency dispersion of all
eigenmode properties—including nonlinearity—in an ultrawide
octave-spanning spectrum. The waveguide parameters are rigor-
ously computed by a full-vector mode solver where we input
graphene’s full set of electromagnetic properties, both linear
and nonlinear; the latter are extracted by quantum perturbation
formulas, as a function of graphene’s chemical potential and
equilibrium lattice temperature. Our results show the potential
of graphene, as a 2D material with electrically tunable linear and
nonlinear response, for Kerr combs or other integrated nonlinear
devices, such as mode-locked and Q-switched lasers.

Index Terms—Kerr microcomb, graphene, ring resonator, inte-
grated waveguide, silicon nitride, electro-optic, nonlinear optics.

I. INTRODUCTION

KERR optical frequency combs (OFC) [1], [2], [3] can
be generated by coupling a CW pump laser into a

dispersive and nonlinear travelling-wave resonator, Fig. 1.
Under specific conditions, the counter-action between group
velocity dispersion (GVD) and Kerr-type refractive nonlin-
earity gives rise to pulse-train output from the resonator,
whose spectrum is an OFC, i.e., a set of equidistant ‘teeth’
separated by the free-spectral range (FSR) of the cavity. An
OFC is also defined by the balance between the cavity’s
aggregate attenuation, which is inversely proportional to its
quality (Q) factor, and the parametric gain imparted by external
pumping and cascaded four-wave mixing (FWM). Evidently,
high values in nonlinearity, Q-factor, and optical confinement
are the desired features for the resonator. The most frequently
used resonators for Kerr OFC are bulk whispering-galleries,
e.g., magnesium fluoride micropillars [4], [5], designed for
very high Q-factors and critically coupled to optical fibers.
As contemporary practical applications shift towards photonic
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integrated circuits (PIC), waveguide ring resonator (WRR)
Kerr combs have also appeared [6], [7], underpinned by the
same principles but also requiring for redesign to exploit the
stronger light-matter interaction in integrated nanophotonics.
In all resonator platforms, bulk or PIC, the external-control
circuitry typically involves one or multiple pump lasers, whose
frequency and amplitude can be accurately controlled in a
timescale comparable to the roundtrip time, tR = 1/FSR. The
performance of an OFC can be quantified by its footprint, FSR,
spectral span (number of teeth), and pumping threshold power.
Applications of OFCs include interconnects [8], massively par-
allel coherent communications [9], RF photonics [10], ultrafast
distance and velocity measurements using light (LiDAR) [11],
[12], chip-scale atomic clocks [13], dual-microcomb spec-
troscopy [14], low noise microwave generation [15], integrated
optical frequency synthesizers [16], and extremely precise
astrophysical measurements [17].

Graphene is an emerging 2D semiconductor material with
high expectations for diverse applications at optical fre-
quencies [18], compatible with standard silicon-photonic
technology, allowing for electro-optical control (EOC) over
its response in an ultrawide spectral window [19], [20], [21],
and exhibiting a high third-order nonlinearity [22], [23], [24],
[25]. These features paved the road towards recent advances
in nonlinear applications of graphene-comprising integrated
photonic waveguide devices [26], [27], demonstrating its high
potential for Kerr OFCs. From a PIC technology perspective,
enhanced light-graphene interaction and dispersion engineer-
ing, both cornerstones of Kerr OFCs, are essentially waveguide
engineering tasks. Additionally, in graphene-comprising (GC)
waveguides, we gain access to extra degrees of freedom,
namely the high nonlinearity from the 2D material and the
EOC over both its linear and nonlinear properties, albeit in
a coupled manner. The recent literature touching upon the
generation of Kerr OFCs in such electro-optically controlled
PICs consisting of graphene overlaid WRRs is relatively
limited: B. Yao et al. presented so-far the only experimentally
measured Kerr comb in a PIC-GC-WRR [28], where EOC
is used to tune the dispersion of the cavity and thus the
output OFC; theoretical and numerical works [29], [30], [31]
present designs and analyses of EOC-PIC-GC-WRR. We note,
however, that none of the above works rigorously considers
graphene’s own nonlinearity, much less its spectral dispersion.

In this work we show that graphene’s nonlinear surface
conductivity, σ(3), can be exploited towards Kerr OFC gen-
eration in a PIC-WRR. This is accomplished by nanophotonic
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Fig. 1. Conceptual depiction of the integrated graphene-comprising configu-
ration that can produce a Kerr OFC when pumped by a CW laser; the effective
circumference of dispersive nonlinear cavity is L = 2πR.

waveguide engineering in the low-loss silicon-nitride-on-
insulator (SNOI) platform, while rigorously accounting for
the spectral dispersion in graphene’s properties, including
the nonlinearity. Note that, in contrast to typical crystals
with self-focusing nonlinearity, graphene exhibits defocusing
nonlinearity in the selected regime, so a normal-dispersion
slot waveguide was used for phase-locked cavity soliton
generation. Moreover, previous related works, e.g., [28],
only employed graphene’s linear surface conductivity, σ(1),
to balance the overall dispersion against the bulk material-
induced nonlinear phase. The encouraging results presented
in this work tug towards another degree of control over the
microcomb, through graphene’s chemical potential (µc): This
property can be electrically tuned by gate biasing, in a wide
range [21], [32], that instantaneously modifies graphene’s
linear and nonlinear properties. Finally, another unveiled path
is towards accessing graphene’s rich nonlinear response at
higher optical intensities: The non-perturbative regime [33],
[34], [35], where photogenerated carrier-induced nonlinear
refraction coincides with saturable absorption (SA) [27], can
potentially further improve the Kerr microcomb performance
owing to the simultaneous increase in the parametric gain and
decrease in the losses (increase in Q-factor).

The structure of the paper is as follows: Following this
introduction, in Section II we present the methods used in
the theoretical and numerical treatment of the subject. The
results are presented and analyzed in Section III and the
summary and conclusions of the work can be found in
Section IV.

II. METHODS

The study of Kerr microcombs in this work starts from
the presentation and development of the theoretical and
computational tools for the numerical simulation and pro-
ceeds to the identification of the various operational regimes
and the corresponding threshold parameter ranges. We use
the Lugiato-Lefever equation (LLE) framework [36], whose
parameters are rigorously derived by a full-vector finite-
element method (FEM) eigenmode solver applied to the ring
waveguide cross-section, Fig. 2, [37]. The numerical solution
of the LLE is done using split-step Fourier method (SSFM)
[38], modified for the inclusion of fully dispersive linear
and nonlinear properties of the waveguide and resonator

system. The ultrawideband frequency dispersion of graphene
properties, both linear and nonlinear, which are fed to our
FEM solver, are computed using well established equilibrium
quantum formulas [24], [39], [40].

A. The Lugiato-Lefever Equation Framework

Even though the LLE was first proposed [41] for the study
of the interplay of FWM with diffraction in transverse (lateral)
profiles arising in nonlinear cavities, the same equation can be
used for the study of interplay between FWM and dispersion
in longitudinal profiles [42]; the LLE equation can be eas-
ily derived from the infinite Ikeda map [43] describing the
pumped nonlinear system in a ring cavity. For our purposes,
the LLE provides a simple and elegant one-equation frame-
work that allows for the full treatment of Kerr microcombs
[36], [44], [45], both in the transient/dynamic and in the static
regime; the former is crucial for practical “locking” to the
soliton operation regime while the latter is insightful for the
identification of the parameter ranges defining each operation
regime. Finally, another advantage of the LLE, from the
implementation perspective, is that it is essentially a damped,
detuned and driven version of the nonlinear Schrödinger
equation (NLSE), which have been extensively employed in
straight waveguide nonlinear applications, from fibers [46] to
integrated waveguides [47], and recently in increasingly more
advanced formulations [27]. The alternative approach to the
LLE, for the study of Kerr microcombs, is a coupled-mode
theory (CMT) framework in the time domain [48], where
the field in the resonator is expanded in the spectrum of
its eigenmodes, which are nonlinearly coupled via FWM. It
has been shown that the two approaches, LLE and CMT,
are equivalent under certain approximations and can both
benefit from computations in the spectral domain via FFT
formulations [49].

The most widely used form of the LLE is in the two-
timescales format: A slow-timeframe (t), corresponding to
the evolution in the order of the round-trip time (tR) in
the travelling-wave resonator, and a fast-timeframe (τ), cor-
responding to the intracavity evolution and assumed to be
moving with the group-velocity of the pumped resonance.
The fast-time can be defined either in the interval τ =

[−tR/2,+tR/2) or [0, tR), which can be mapped to the azimuth
angle scanning the resonator circumference φR = [0, 2π), or
as the reciprocal of the resonance frequencies in the band
considered. We have opted for the former, as it provides a
solid connection to the CMT framework and to the dispersive
properties of the eigenmodes in a broad spectrum. The cavity
is pumped by an external CW laser at frequency ωp tuned near
the ‘closest cold-cavity resonance’ (CCCR) natural frequency;
the detuning of the pump laser from the CCCR frequency
is defined as δω = ωp − ωCCCR. For this configuration, the
LLE-like equation for the study of a Kerr microcomb in
the two-timescale format can be written following standard
notation, e.g., see section 5.2 and Eq. (50) in [3] or Eq. (3) in
[36], as

tR
∂E(t, τ)
∂t

=

�
LFNLSE −

θ

2
− iδ0

�
E(t, τ) +

√
θEin, (1)
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where FNLSE denotes an NLSE-like operator in [1/m] units

FNLSE = −
α

2
+ i

X
n≥2

βn

n!

�
i
∂

∂τ

�n

+ iγ|E|2, (2)

using the exp (+iωt) sign convention throughout. The various
parameters and variables appearing in Eq. (1) and Eq. (2) are
defined as follows:
• E (t, τ) is the E-field amplitude inside the resonator (i.e.,

along the fast-time τ) as the slow-time (t) progresses,
normalized so that |E|2 measures the power in Watts.

• L is the effective cavity length, e.g., L = 2πR for a ring
microresonator of radius R.

• tR is the round-trip time and corresponds to the inverse
of the FSR of the comb. It can be computed as tR =

(Lngr,0)/c0, with ngr,0 being the group index at the central
resonance frequency of the cavity, which is typically the
CCCR frequency, ngr,0 = ngr(ωCCCR) ≈ ngr(ωp).

• α in [1/m] units is the propagation power-loss coefficient
of the waveguide that makes up the cavity; in resonator
terms, it accounts for its intrinsic (resistive/dissipative and
radiative) linewidth or Q-factor, via αLQint = tRωp.

• βn, with n ≥ 2, are the dispersion parameters of the
waveguide, with β2 corresponding to GVD in [s2/m] units.
When β3 and higher are omitted, the equation is identical
to the LLE. β1 = ngr/c0 is related to the tR.

• γ is the nonlinear parameter of the waveguide in [1/m/W]
units, identical to the one appearing in the NLSE.

• θ is the power coupling coefficient of the cavity, related
to its external Q-factor by Qext = tRωp/θ. The resonator is
typically designed for critical coupling, i.e., Qext ≈ Qint,
in a wide spectral band around the ωCCCR.

• δ0 = δ0(t) is the normalized phase detuning of the pump
with respect to the CCCR, δ0 = [β0 (ωCCCR) − β0(ωp)]L,
where β0 = neffk0 is the phase constant. As pumping is
in the close vicinity of ωCCCR, δ0 ∝ −δω.

• Ein = Ein(t) is the pumped CW E-field amplitude, with
|Ein|

2 measured in Watts.
In the simplest form of the above LLE-like main equation,

all the parameters are constants and only the GVD parameter
is considered (i.e., βn = 0 for n ≥ 3), in which case the
main equation corresponds exactly to the original LLE [42].
However, extensions can be devised, first and foremost to
include higher order dispersion (arbitrarily high), secondly,
to introduce frequency dispersion to some of the parameters
(e.g., to Q-factors or nonlinear coefficient, γ), thirdly, to
slowly modulate the pump field, Ein → Ein (t), in frequency
and/or amplitude, or, finally, to add more pumping lasers
(colors).

In this work, we have considered the frequency dispersion
of all waveguide mode parameters: α (attenuation), β (phase),
and γ (nonlinear refraction parameter), Fig. 2. The parameters
correspond to non-trivial waveguide eigenmode properties and
thus need to be computed in a rigorous manner. We use
a FEM-based full-vector waveguide mode solver [25], [37]:
first we incorporate all constituting material dispersion (e.g.,
for silicon nitride, oxide, and graphene), and compute the
linear modal properties in a wide spectrum, α̃(ω) and β̃(ω),

Fig. 2. Cross-section of the graphene-clad SiN-slot waveguide from which
the dispersive LLE properties are rigorously extracted.

along with the corresponding mode profiles in the waveguide
cross-section E(x, y); the profiles are then overlapped in a
post-processing computation with the bulk and sheet medium
self-acting nonlinear properties, χ̃(3)

Kerr(ω) and σ̃(3)
Kerr(ω), respec-

tively, to extract the nonlinear parameter γ̃(ω) of the mode in
the whole spectrum, based on perturbation theory [25], [37].
The FEM mode solver-based analysis and optimization of the
graphene-clad slot waveguide can be found in our previous
works [26], [27]; here, it is crucial to point out that (i) the
waveguide supports a horizontally polarized quasi-TE mode
highly confined in the air-slot formed between the two high-
index rails so that it maximally interacts with graphene and, (ii)
the presence of graphene has minimal effect on waveguiding
in the NIR band, but it can drastically tune the mode losses
and nonlinearity. Following standard practice, all dispersive
parameter {α, β, γ} spectra were computed on an appropriately
wide span of cold-cavity resonances identified by normalized
integer order, for example µ = [−100,+100], with µ = 0
being the pumped CCCR; for more details see, e.g., Section II
of Supplementary Information to [45] or the pyLLE software
in [50].

B. Applying the Split-Step Fourier Method

The numerical solution of the transient two-timescale ‘mean
fields’ LLE equation can be done with the SSFM [38], [46],
similarly to the NLSE, with the difference that the space-
stepping is now replaced with the slow-time-stepping. The
SSFM procedure involves incrementing the slow time t by
a step ∆t (whose appropriately chosen size is typically in
the order of the round-trip time, tR), and calculating the
fast-time form of the total E-field inside the resonator at
that slow-time instant, i.e., E (tinit + ∆t, τ). The calculation
involves operations in the fast-time domain and in the spec-
tral/frequency domain (the reciprocal of the fast-time), which
are interrelated by the periodicity of the Fourier transform
in these traveling wave resonators, E(τ) ↔ Ẽ(ω). The initial
intracavity field, i.e., E (tinit, τ), is noise-seeded by vacuum
fluctuations. Externally controlled parameters of the modeled
system, e.g., the pump frequency (detuning) or power, can be
changed along the slow-time. Finally, the total power of the
comb, i.e., the sum of power in all spectral lines, and the out-
coupled fields can be computed at each slow-time instant from
E(t, τ), the field inside the resonator.

In our implementation, the spectral domain corresponds to
the azimuthal-mode resonance orders relative to the pumped
resonance (e.g., to the integers µ = [−100,+100], with
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µ = 0 being the pumped CCCR), and not to a set of equidistant
spectral frequencies. The effect of the linear dispersive terms,
i.e., {α, β, γ, θ} in Eq. (1) and (2), are directly introduced in the
spectral (ωµ or just µ) domain using discrete Fourier transform
of the fast-time fields; this approach has been proven [49] to be
equivalent to CMT approaches [48] but more computationally
efficient than performing all operations in the time domain.
The dispersion of the modal attenuation constant, α̃(ω), that
is relevant to this work, is directly introduced as an imaginary
part in the real-valued phase constant, β̃(ω). This approach
is far superior to time-derivatives, e.g., Section 2.3.2 in [46],
from the numerical implementation standpoint; moreover, it
allows us to consider an arbitrary order of terms, much how
it is standard practice for the phase dispersion.

The effect of the instantaneous nonlinear terms is introduced
to the intracavity E-fields in the fast-time (τ) domain, by a
slow-time stepping algorithm, i.e., in an averaged/mean-fields
sense [42]. The slow-time step size ∆t can be adaptively
adjusted along the simulation, with respect to the overall mag-
nitude of the nonlinearity and the intracavity power, balancing
the trade-off between computational efficiency and accuracy;
in terms of the perturbation theory, the criterion to satisfy is
that the peak accumulated phase due to nonlinear refraction is
vanishingly small,

∆ΦNL = γPpeak∆z′ � 1, (3)

where Ppeak = maxτ{|E(t, τ)|2} and z′ = (L/tR)t, in [m] units,
is the distance traveled along the resonator circumference
at the mean group velocity as slow-time advances. Now,
the dispersion of the nonlinear mode parameter, γ̃(ω), is
introduced as follows: Considering only the last term in Eq.
(2), plugged into Eq. (1) with everything else zeroed out, we
write ∂E/∂z′ = +iγ |E|2 E = N̂γE; the nonlinear τ-domain
operator can be formally written using the γ̃ spectra and fast-
time field E = E(τ) as

N̂γ = +i
IFT

˚
γ̃ (ω) FT

˚
|E|2E

		
E

(4)

in [1/m] units, where FT/IFT is the forward/inverse Fourier
transform pair. In the standard perturbation practice, the fast-
time field after a nonlinear step ∆z′ = (L/tR)∆t can be
written as

∂E
∂z′

= N̂γE ⇒ E(z′ + ∆z′, τ) ≈ E(z′, τ) exp (N̂γ∆z′). (5)

Finally, an iterative Crank-Nicolson (CN)-like numerical
scheme is also employed to increase the step size with
controlled error; it involves a fictitious mid-step and the
consequent splitting of the linear and nonlinear contributions
in two halves. Typically, 2-5 CN iterations are enough for
∆ΦNL ≈ 0.1 rad.

Summarizing the SSFM algorithm for the solution of the
LLE: Knowing the ‘step-start’ E-field inside the resonator, i.e.,
E(tstart, τ), the following procedures take place for each slow-
time step ∆t, i.e., to compute the ‘step-end’ field E(tend, τ):

1) Adjust any external t-dependent parameters (e.g., δ0 for
scanning the pump laser detuning through the ωCCCR).

2) Compute maximum step-size ∆t using Eq. (3).

3) Add in-coupled pump,
√
θEin in Eq. (1) in τ-domain; if

θ is dispersive, add in ωµ-domain using FT/IFT pair.
4) Add dispersive linear and nonlinear term contributions in

the ωµ- and τ-domains, respectively, as explained above.
5) Perform CN iterations until E(tend, τ) converges.
6) Compute comb power and out-coupled spectra.

C. Identifying Operation Regimes and Critical Parameters
The pumped nonlinear/dispersive resonator system provides

a rich platform for nonlinear dynamics, of which the phase-
locked cavity soliton is one possible regime. These dynamics
can be studied via the steady-state solutions of the LLE,
derived by negating the slow-time derivative and, optionally,
also the fast-time derivative. Without going into details that
pertain to the bifurcations of the nonlinear system [51], we
will say that the parameters that mostly govern its response are
the CW pumping power, |Ein|

2, the pump frequency detuning,
δω, and the GVD, β2; note that the sign relation between
{δω, β2, γ} also defines the operation regime. For instance,
for bright solitons to arise, a combination of self-focusing
nonlinearity (positive γ) and anomalous GVD (negative β2)
is typically used; however, the same dynamics can be attained
for opposite-sign parameter values, i.e., for defocusing non-
linearity (negative γ) with normal GVD (positive β2).

The relevant conclusions extracted from such a stability
analysis are the following: (i) there is always, i.e., for any
detuning, a laser power range in which a Kerr comb can be
generated, and (ii) there is an optimal path to traverse the
LLE-solution bifurcation map to lock-in to a stable Kerr comb.
Building upon the latter conclusion, the detuning of the pump
laser frequency with respect to the CCCR is both one of the
critical parameters for a Kerr microcomb and one that can be
easily controlled (externally); so it is immensely important.
Typically, the detuning is temporally scanned (specifically by
slowly de/increasing the pump frequency through the main
resonance, for anomalous/normal GVD regime, respectively)
to lock into a stable cavity soliton regime, whose spectrum
corresponds to a wideband comb.

The four characteristic operation regimes, for the most often
used case of {positive γ; anomalous GVD; CW pump} can be
successively attained for pump frequency decreasing through
the CCCR (starting from ωp > ωCCCR, i.e., δω > 0):

1) Modulation Instability (MI) induced stable dissipative
structures in the τ-domain, also referred to as “Turing
rolls”; the spectrum is a primary comb with teeth spaced
by several FSRs and is attained for δω > 0 or near-zero.

2) MI-induced chaos, i.e., unstable dissipative structures
with a broad but noisy spectrum centered at ωp; this
regime typically arises for slightly negative δω.

3) Soliton breathers (or molecules), i.e., multiple unstable
dissipative cavity solitons that rapidly evolve (e.g., shift,
split, merge, collide or even disappear) as t advances;
this transitional regime is typically ‘brief’ in δω tuning.

4) Phase-locked stable cavity soliton(s), one or multiple,
with narrow hyperbolic secant pulse shapes correspond-
ing to a well-formed broadband comb-like spectrum;
this regime is largely stable, and the soliton phase and
amplitude can be mildly tuned for a broad δω < 0 range.
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For larger detuning, above or below the CCCR frequency, the
CW laser cannot efficiently couple power into the resonator
and, thus, there are no temporal dynamics (output is CW).

The CW pumping power required for stable cavity solitons
to emerge (wide-span OFC) has both upper and lower limits;
we are interested in minimizing the lower threshold. It can
be shown that the power is proportional to the normalized
parameter F2, where F is defined in Eq. (7) of [51]; under the
assumption of critical coupling and neff ≈ ngr,0, the estimated
threshold power can be written in terms of the quantities
defined in this work as

F2 ≈
|γ|

Lα2 |Ein|
2. (6)

Threshold values for primary comb (Turing rolls) formation
are in the order of F2 ≈ 2 but, depending on dispersion,
realistic full combs require two or four times that power. In
all cases, low waveguide losses (high Qint), high nonlinearity,
and short cavities help decrease the pumping power threshold.
However, note that, in integrated micro-resonators, L cannot be
decreased too much, because bending (radiative) losses would
become significant and add to the ohmic (resistive) losses for
which the modal attenuation α primarily accounts for in this
work.

D. Electro-Optical Control via Graphene

We assume that a graphene monolayer sheet is covering an
integrated WRR in such a way that the lightwave travelling
along the waveguide can maximally interact with it. Appro-
priately designed electrical contacts are assumed integrated
in the structure, e.g., [21], [28], [32], and [33], without
interfering with the optical propagation, so that graphene’s
optical response can be tuned practically instantaneously and
with only a few-V voltage. In quantum electronic terms,
tuning refers to a change in graphene’s chemical potential
(µc), or Fermi energy, exploiting its linear energy-momentum
dispersion and the zero-bandgap feature, valid near the tip of
the Dirac cone [18]. Theoretical and experimental evidence for
linear and third-order nonlinear surface conductivity, σ(1) and
σ(3), respectively, confirm the importance of tuning µc with
respect to the half-photon energy, i.e., µc ≶ ~ω/2.

In the NIR spectrum, pristine graphene (|µc| � ~ω/2) is
quite absorptive despite its atomic thickness: its linear conduc-
tivity takes the characteristic value σ(1) ≈ σ0 ≡ q2/4~ ≈ 61 µS,
responsible for the 2.3% absorption by a free-standing mono-
layer at normal incidence. Tuning so that |µc| > ~ω/2 cancels
the interband absorption mechanism (Pauli blocking) and thus
reduces graphene absorption making it optically transparent,
|σ(1)| � σ0. The spectra σ̃(1)(ω) can be computed by the
Kubo-formulas [24], [39] and depend, apart from µc, also
on the ambient temperature and quality of graphene sample;
the latter is usually quantified by the intraband and interband
momentum relaxation lifetimes (τi and τe, respectively) or
the corresponding carrier mobilities. Note that the Im{σ̃(1)},
contributing to the phase constant, can also be electrically
controlled and exhibits a sharp resonance (maximization) near
µc = ~ω/2; this property was used in [28] to tune the
dispersion of the Kerr comb.

The third-order Kerr-like perturbative nonlinearity of
graphene in the NIR, both its magnitude and its sign, have
been a topic of much debate over the last 15 years [52]. The
present consensus is that graphene’s NIR nonlinearity near
µc = ~ω/2 is defocusing with a peak in its magnitude, which
is appreciable, e.g., σ(3)

Kerr ≈ +i10−21 S(m/V)2. The actual
value and sign can vary, especially with respect to 2µc/~ω,
while some rather involved expressions for the complex-valued
σ̃(3)(ω) spectra have been extracted by quantum calculations
at equilibrium [24], [39], which have been implemented in
MATLAB code [40]. Note that by σ(3)

Kerr we refer to the ‘self-
acting’ nonlinearity, i.e., the response of the medium onto
itself when illuminated by monochromatic radiation at ω.
Formally, we write σ(3)

Kerr as a fourth-rank tensor [24], [39],
σ(3)

d;abc(−ω,ω, ω) with {a, b, c, d} = {x, y, z} being the compo-
nents of the E-field; symmetries can be used to greatly simplify
it, eventually revealing that only one tensor component, e.g.,
σ(3)

x;xxx, is enough to fully quantify graphene’s Kerr response
for the in-plane arrangement depicted in Fig. 2.

It is worth pointing out that Im{σ̃(3)} corresponds to the
Kerr effect, i.e. refractive nonlinearity, while Re{σ̃(3)}, which
can also be non-zero, denotes induced transparency (saturable
absorption or photo-bleaching) or induced absorption (similar
to two-photon absorption), depending on its sign. Finally,
we stress that for high effective optical intensities, e.g.,
above 10 MW/cm2, graphene nonlinearity enters into a non-
perturbative electrodynamic regime where more complicated
transient effects arise [32], [53]; of particular interest is high
photogenerated carrier nonlinear refraction and deep saturable
absorption [27], [33], [34].

III. RESULTS

Our aim is to showcase the potential of Kerr microcomb
generation in integrated waveguide ring resonators operating
near the telecom wavelength of λ0 = 1550 nm (193.4 THz).
To achieve a full-octave span we need to study the spectral
band between [0.75,1.5]λ0 which is [2.33,1.16] µm in our
case, i.e., spanning 130 THz (130-260 THz). Most importantly,
the lower wavelength is very close to silicon’s bandgap,
where absorption will be detrimental. Thus, the integrated
platform of choice in this work is Si3N4-on-insulator (SNOI),
where foundry technology enables very low losses and high
geometric feature resolution. The latter is important because
graphene’s maximum nonlinearity in this band is defocusing
(γ < 0), meaning that our waveguide must have normal
GVD for bright solitons to emerge. Now, normal GVD can
be attained by the slot waveguide archetype (wire/rib type
waveguides have anomalous dispersion), where waveguide
engineering [26] has shown that a sufficiently narrow spacing
between the two rails, e.g., 50 nm, is required to maximize
the TE-polarized mode-field confinement in the slot and on the
graphene sheet, which leads to a maximal |γ|. In this work, the
refractive index of Si3N4 is taken by Sellmeier-like formulas
of [54] with a value of 1.98 at 1550 nm; for its nonlinear index,
we assume a flat value of n2 = +2.4 × 10−19 m2/W (the plus
sign denotes a self-focusing nonlinearity); of course, we note
that in real-world conditions, the index of stoichiometric Si3N4
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can easily vary at the second or even first decimal depending
on the growth conditions and process (LP-CVD vs. PE-CVD).

Concerning graphene, an unpatterned monolayer is
employed in this work, assumed to fully clad the
SNOI waveguides, Fig. 2. As described in the Meth-
ods, Section II-D, its relevant electromagnetic properties
are: (i) σ̃(1)(ω; µc,T, τi,e), used by the FEM waveguide
solver to compute the phase and attenuation spectra, and
(ii) σ̃(3)(ω; µc,T, τi,e), used in a post-processing of the trans-
verse waveguide mode profile to compute the self-acting Kerr
nonlinear parameter spectra. In this work, we used the formu-
las of [24]1 with a lattice temperature of 300 K and assuming
good quality graphene samples, corresponding to intra- and
interband momentum relaxation lifetimes of τi,e = 20 fs
(equivalent rates Γi,e = 33 meV). It is worth stressing that no
other loss mechanisms, e.g., bending loss or scattering from
sidewall roughness or intrinsic absorption in the dielectrics
(e.g., tan δ or imaginary part in the refractive index), are
considered in this work, because the linear graphene con-
ductivity Re{σ̃(1)} vastly dominates in these highly-confining
nanophotonic waveguides.

A. Preliminary Dispersionless Case

We start from a preliminary dispersionless case study, where
only the key LLE parameters have been introduced, using
spectrum-averaged values. We consider a SNOI-slot waveg-
uide ring resonator made of two SiN rails of 1µm×0.5µm
spaced by 50 nm and clad by a graphene monolayer, Fig. 2,
with a constant linear conductivity σ(1) for µc > ~ω/2 (corre-
sponding to the low-loss regime) and a constant dispersionless
nonlinear surface conductivity of σ(3) = +i10−21 [S(m/V)2],
purely imaginary with the positive sign corresponding to
defocusing refraction. The ring-resonator radius was chosen
so that its circumference is L = 100 µm. From these, we
calculate the LLE parameters at the pumping wavelength of
1550 nm (193.4 THz): ngr,0 ≈ 2 (FSR is 1.5 THz and roundtrip
time is 0.67 ps), α = 0.8/mm (Qint ≈ 104), γ ≈ −100 m−1W−1,
β2 = +1.1 ps2/m, and β3 = −0.0025 ps3/m. Assuming critical
coupling (Qext = Qint) at the central frequency, Eq. (6) gives
a 1.3 W threshold for F2 = 2, but a 5 W pumping power
is required to produce an appreciable and stable Kerr comb;
this was numerically verified in Fig. 3, by scanning the pump-
laser detuning from −50 to 200 GHz (δ0 = +2.6 to −10.5).
This configuration produces a comb with a 60 dB span from
120 to 270 THz [Fig. 3(b) near t = 12.5 ns] corresponding
to 125% octave. We stress that the four characteristic regimes
(Turing rolls, MI-chaos, soliton breather, phase-locked soliton)
are now observed as the pump frequency is increased through
the resonance, coming to a bright soliton for δ0 < 0 (δω > 0);
this is opposite from the regular case of anomalous β2 and
self-focusing γ, where the bright soliton regime emerges for
δ0 > 0 (δω < 0). We also note that the produced soliton,
albeit stable for a large detuning range, is quite dispersive as
denoted by the diagonal traces in Fig. 3(a) between 7 and
12.5 ns, owing to the high GVD and TOD. This preliminary

1For σ(1), Eq. (11)-(12) and (B1); for σ(3), Eq. (14)-(26) and (34). These
formulas have been implemented in MATLAB code by the Authors [40].

Fig. 3. A FSR ≈ 1.5 THz Kerr microcomb produced by 5 W pumping of a
simplified graphene-clad SNOI-slot WRR. Evolution of normalized intracavity
(a) fast-time field |E(t, τ/tR)|2, (b) spectrum |Ẽ(t, f )|2 in dB, and (c) total comb
power, as the pump frequency is linearly ramped with slow-time (t) passage.
Spectrally-averaged LLE parameters: ngr,0 ≈ 2, L = 100 µm, α = 0.8/mm
(Qint ≈ 104), β2 = +1.1 ps2/m, β3 = −0.0025 ps3/m, γ = −100 m−1W−1,
Qext = Qint.

case study helps us gain confidence that graphene can indeed
produce Kerr microcombs, albeit at high pump power,2 but
with the same features as the ones observed in more well
understood configurations. Our next goal is to assess whether
the high dispersion in graphene nonlinearity can detrimentally
affect Kerr OFC generation.

B. Full Waveguide Dispersion

The σ(1) and σ(3) values chosen for graphene in the previous
case-study were optimistic and dispersionless, as evidenced by
the symmetric spectra in Fig. 3(b). We take a step towards
more realistic modeling by including the dispersion of all
waveguide parameters in the LLE. We use quantum-electronic
theory predicted formulas for graphene’s σ̃(1) and σ̃(3) [24],
[40], which dominate the dispersion of the waveguide losses
(α or Qint) and nonlinear parameter (γ), respectively. As
previously mentioned, no other loss mechanisms apart from
Re{σ̃(1)} are considered in this work, being negligible com-
pared to graphene losses. Note that, for this waveguide, the
phase dispersion (i.e., the parameters βn, n ≥ 2) is dominated
by the waveguide and bulk SNOI material dispersion, and not
by graphene’s Im{σ(1)} dispersion.

To assess the magnitude of the dispersion, we sweep
graphene’s chemical potential (µc) and extract the spectra
of the waveguide parameters with a mode solver, Fig. 2,
seeking optimum configurations for an octave span around the
central pumping at 1550 nm; for this study, the SiN rail width
was reduced to 800 nm. The resulting parameter spectra are
depicted in Fig. 4, where we observe graphene’s well-known
trade-off between low losses and high nonlinearity near the

2Breathing solitons could be produced for lower pumping powers, e.g.,
2.5-3 W, but a very careful laser scanning was required.
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Fig. 4. Frequency and µc dispersion of the waveguide parameters that are introduced in the LLE: (a) attenuation, (b) GVD, and (c) nonlinear parameter.
The slot waveguide is made of two 800 nm×500 nm SiN rails spaced by 50 nm and overlaid by a good quality graphene monolayer (τi,e = 20 fs) at room
temperature [40]. The dotted cross marks the selected µc and pump wavelength.

Fig. 5. The evolution of the 1.48 THz-FSR comb’s intracavity (a) spectrum
and (b) total power, as the pump detuning is slowly swept through the
1550 nm resonance. The pumping power is 10 W and the full wideband
dispersion of all parameters is accounted for as explained in the text.

half-photon energy line, in panels (a) and (c); in panel (b),
we note that GVD is lower in the same region, which is
favorable for more stable solitons, and is normal in all studied
regions. The higher order phase dispersion parameters, βn for
n ≥ 3, are extracted by numerical differentiation of the neff(ω)
spectra computed by the mode solver. Finally, we note that the
dispersion of the coupling coefficient θ was not considered
in this work, i.e., a constant Qext was selected, for critical
coupling on the main resonance; engineering of the coupling
section between the access and ring waveguide, Fig. 1, requires
more rigorous analysis, to ensure broadband matching of the
two Q-factors.

Now, to evaluate the performance of this more realistic Kerr
comb, we choose µc = 0.5 eV as a compromise between low
losses and adequately negative (defocusing) nonlinearity. We
perform an LLE simulation with the SSFM with a higher
CW pump power, 10 W, to compensate for the lower non-
linear parameter; we sweep the pump detuning from −10 to
+50 GHz, acquiring the comb depicted in Fig. 5. The
60 dB bandwidth spans from 165 to 255 THz (55% octave),
i.e., is less than half of what was attained in the optimistic
dispersionless case. The spectra are naturally asymmetric, and
we note a higher efficiency towards the blue flank, i.e., to the
region where γ remains negative despite the increase of the
losses; the red flank of the comb spectrum is more suppressed
owing to the reduction of γ, Fig. 4(c).

C. Further Improvement

Revisiting Eq. (6), where the figure-of-merit F2 ∝ γ/α2

minimizes the pumping power for given cavity length L, we
apply a spectral weighting on the (λ0, µc)-dependent heatmaps
of Fig. 4(a) and (c). From these, we infer that a two-
fold decrease in |Ein|

2 could be achieved by pumping near
λ0 ≈ 1.95 µm with graphene tuned at µc ≈ 0.43 eV.

Additionally, the SNOI waveguide dimensions could be re-
engineered to seek an optimal combination between {α, β2, γ}
or one could investigate graphene’s aspects, e.g., the region
µc > ~ω where its nonlinearity is self-focusing (with wire-
type waveguide) or what improvement is attained for higher
quality samples (τi,e > 20 fs).

Finally, we could probe graphene’s richer nonlinear pho-
toconductivity when it is pumped into the non-equilibrium
thermodynamic regime where, apart from thermal effects,
we must also consider the photogenerated carrier temporal
dynamics, which are in the order of the roundtrip time. In such
a regime, the combination of nonlinear refraction and saturable
absorption [27], corresponding to higher γ and Q, respec-
tively, offer an ideal combination for enhanced performance in
Kerr comb generation. Experimental evidence of this regime
are limited [34] but there are encouraging perspectives to
explore [52].

IV. SUMMARY AND OUTLOOK

We have theoretically and numerically demonstrated that
graphene’s own third-order nonlinearity can be used to pro-
duce voltage-controlled octave-spanning THz-wide FSR Kerr
microcombs, when a simple monolayer clads an engineered
silicon-nitride slot-waveguide ring resonator. The analysis was
carried out using the Lugiato-Lefever equation framework,
which was modified to include the ultra-wideband frequency
dispersion of all underlying waveguide parameters, including
the all-important nonlinearity. For the numerical extraction of
the LLE parameters in a broad band, we utilized a rigorous
full-vector mode-solver formulation, fed by graphene’s dis-
persive linear and nonlinear surface conductivities; the latter
were computed by perturbatively-extracted quantum-electronic
formulas at thermal equilibrium.

From a technological perspective, the problem with all
graphene-comprising waveguides are the linear losses which
impose a threshold on the intrinsic Q-factor of the cavity and
hence increase the power threshold; note that the formulas
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used here predict a maximal nonlinearity-over-losses figure-
of-merit when graphene is biased in the vicinity of half-photon
energy, i.e., relatively close to its high-loss regime. A possible
way to overcome this limitation is by pumping graphene
in the non-perturbative regime [53], where the combination
of saturable absorption and nonlinear refraction can prove
beneficial [27]; the study of these transient free-carrier effects
in a pumped cavity for OFC generation is an outstanding
challenge.

In all cases, the contribution of this paper shows that
graphene’s voltage-tunable linear and nonlinear response
can provide another degree of freedom, complementing
single/multi-pump frequency detuning or amplitude modula-
tion, for enhanced Kerr comb control [55] or parametric gain.
This proof-of-concept can be exploited in other nonlinear
devices, both resonator-based, e.g., mode-locked and Q-
switched lasers [56], [57] and LiDAR [12], and non-resonant,
e.g., supercontinuum generation or topological lattices. Finally,
the LLE formulation developed here can be helpful in model-
ing other systems or devices characterized by pronounced and
ultrawideband dispersion in their nonlinearity, such as cavities
formed by metasurfaces [58].
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